--%>

Probability on expected number of days

It doesn't rain often in Tucson. Yet, when it does, I want to be prepared. I have 2 umbrellas at home and 1 umbrella in my office. Before I leave my house, I check if it is raining. If it is, I take one of the umbrellas with me to work, where I would leave it. When I go back home, I check if it is raining. If it is, I take one of the umbrellas with me home; therefore, the number of umbrellas at my house and in my office changes with time. The probability of rain is 0.1 every time I leave either my office or my house. The event of rain is independent of location and what happened in the past. Find the expected number of days before I run out of umbrellas where I am and it is raining outside. Also find the probability that I am home when that happens.

E

Expert

Verified

The person has 2 umbrellas at home and 1 in office. Also the probability of raining is independent of other factors and is equal to 0.1.

Now let us find the probability distribution of
X: Number of days before he running out of umbrellas.

Now X can take values from 0,1,2,3,..

Let us find the probability X=0, Now since he have 2 umbrellas at home and one at office, this probability will be zero.

Now let us find the probability x=1, now here we are interested in finding the probability that he runs without umbrella on second day, this will happen in following manner.

When he will go office there is no rain, so probability is 0.9, now on returning there is rain with prob 0.1 now on second day leaving office there is no raining with 0.9 and at the time of return it rains with 0.1

Hence total probability is .9*.1*.9*.1

Now let us find the probability x=2, now here we are interested in finding the probability that he runs without umbrella on second day, this will happen in following manner.

This probability will be .1*.9*.1*.9*.1  (The probabilities are arranged according to event)
Now let us find the probability x=3, now here we are interested in finding the probability that he runs without umbrella on second day, this will happen in following manner.

The probability is .9*.1*.1*.1*.9*.1

The probability that more x ≥ 4 will be 1 minus all these probabilities

1053_probability.jpg

Hence the expected number of days is 3.97,

Means on an average more than 3 days required to run without umbrella.

   Related Questions in Advanced Statistics

  • Q : Problem on Poisson distribution The

    The number of trucks coming to a certain warehouse each day follows the Poisson distribution with λ= 8. The warehouse can handle a maximum of 12 trucks a day. What is the probability that on a given day one or more trucks have to be sent away? Round the answer

  • Q : Correlation Define the term Correlation

    Define the term Correlation and describe Correlation formula in brief.

  • Q : Non-parametric test what is the

    what is the appropriate non-parametric counterpart for the independent sample t test?

  • Q : How you would use randomization in

    The design of instrument controls affects how easily people can use them. An investigator used 25 students who were right-handed to determine whether right-handed subjects preferred right-handed threaded knobs. He had two machines that differed only in that one had a

  • Q : MANOVA and Reflection Activity 10:

    Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a

  • Q : Components of time series Name and

    Name and elaborate the four components of time series in brief.

  • Q : Discrete and continuous data

    Distinguish between discrete and continuous data in brief.

  • Q : Null hypothesis In testing the null

    In testing the null hypothesis H0: P=0.6 vs the alternative H1 : P < 0.6 for a binomial model b(n,p), the rejection region of a test has the structure X ≤ c, where X is the number of successes in n trials. For each of the following tests, d

  • Q : Probability of Rolling die problem A

    A fair die is rolled (independently) 12 times. (a) Let X denote the total number of 1’s in 12 rolls. Find the expected value and variance of X. (b) Determine the probability of obtaining e

  • Q : Problem on income probability Kramer

    Kramer spends all of his income  $270  on two products, soup (S) and on golf balls (G). He always bought 2 golf balls for every 1 cup of soup he consumes. He acquires no additional utility from the other cup of soup unless he as well gets 2 more golf balls a