Double Integrals for Non-rectangles:
In the prior lecture we considered only integrals over rectangular regions. In reality regions of interest are rarely rectangles and therefore in this lecture we consider two strategies for evaluating integrals over other regions.
Redefining the function:
One strategy is to redefine the function therefore that it is zero outside the region of interest then integrate over a rectangle that includes the region.
For illustration suppose we need to approximate the value of:
Where T is the triangle with corners at (0, 0), (1, 0) and (0, 2) afterwards we could let R be the rectangle [0, 1] × [0, 2] which contains the triangle T. See that the hypotenuse of the triangle has the equation 2x + y = 2. Afterwards make f(x) = sin3(xy) if 2x + y ≤ 2 and f(x) = 0 if 2x + y >2. In Mat lab we are able to make this function with the command:
> f = inline(’sin(x.*y).^3.*(2*x + y <= 2)’)
In this command <= is a logical command The expression in parentheses is then a logical statement and is given the value 1 if the statement is true and 0 if it is false. We are able to then integrate the modified f on [0, 1] × [0, 2] using the command:
> I = dblquad(f,0,1,0,2)
As another illustration suppose we need to integrate x2 exp(xy) inside the circle of radius 2 centered at (1, 2). The equation for this circle is (x − 1)2 + (y − 2)2 = 4. Note that the in the circle is (x−1)2 +(y −2)2 ≤ 4 and that the circle is contained in the rectangle [−1, 3]×[0, 4]. Therefore we can create the right function and integrate it by:
> f = inline(’x.^2.*exp(x.*y).*((x-1).^2 + (y-2).^2 <= 4)’)> I = dblquad(f,-1,3,0,4)
Integration Based on Triangles:
The next approach to integrating over non-rectangular regions is based on subdividing the region into triangles. Such a subdivision is called the triangulation. On regions where the boundary comprises of line segments this can be done exactly. Yet on regions where the boundary contains curves this can be done approximately. This is a extremely important idea for several reasons the most important of which is that the finite elements method is based on it. Another reason this is significant is that often the values of f are not given by a formula however from data. For instance suppose you are surveying on a construction site as well as you want to know how much fill will be needed to bring the level up to the plan. You would carry on by taking elevations at numerous points across the site.
Nevertheless if the site is irregularly shaped or if there are obstacles on the site then you cannot make these measurements on an exact rectangular grid. In this case you can utilize triangles by connecting your points with triangles. Several software packages will even choose the triangles for you (Mat lab will do it using the command Delaunay).
The fundamental idea of integrals based on triangles is exactly the same as that for rectangles the integral is approximated by a sum where each term is a value times an area:
where n is a number of triangles Aiis the area of the triangle and x* a point in the triangle.
Nevertheless rather than considering the value of f at just one point people habitually consider an average of values at several points. The mainly convenient of these is of course the corner points. We are able to represent this sum by:
where f¯ is the average of f at the corners.
If a triangle has vertices (x1, y1), (x2, y2) and (x3, y3) the formula for area is:
A function my three corners to calculate using the three corners method is given below.
Another idea would be to utilize the center point (centroid) of each triangle. If triangle has vertices (x1, y1), (x2, y2) and (x3, y3) then the centroid is given by the simple formulas:
x‾ = (x1 + x2 + x3)/3 and y‾(y1 + y2 + y3)/3
function I = mythreecorners(f,V,T)% Integrates a function based on a triangulation utilizing three corners% Inputs: f -- the function to integrate as an inline% V -- the vertices. Every row has the x and y coordinates of a vertex% T -- the triangulation Every row gives the indices of three corners% Output: the approximate integralx = V(:,1); % extract x and y coordinates of all nodesy = V(:,2);I=0;p = size(T,1);for i = 1:px1 = x(T(i,1)); % find coordinates and areax2 = x(T(i,2));x3 = x(T(i,3));y1 = y(T(i,1));y2 = y(T(i,2));y3 = y(T(i,3));A = .5*abs(det([x1, x2, x3; y1, y2, y3; 1, 1, 1]));z1 = f(x1,y1); % find values and averagez2 = f(x2,y2);z3 = f(x3,y3);zavg = (z1 + z2 + z3)/3;I = I + zavg*A; % accumulate integralEnd
Latest technology based Matlab Programming Online Tutoring Assistance
Tutors, at the www.tutorsglobe.com, take pledge to provide full satisfaction and assurance in Matlab Programming help via online tutoring. Students are getting 100% satisfaction by online tutors across the globe. Here you can get homework help for Matlab Programming, project ideas and tutorials. We provide email based Matlab Programming help. You can join us to ask queries 24x7 with live, experienced and qualified online tutors specialized in Matlab Programming. Through Online Tutoring, you would be able to complete your homework or assignments at your home. Tutors at the TutorsGlobe are committed to provide the best quality online tutoring assistance for Matlab Programming Homework help and assignment help services. They use their experience, as they have solved thousands of the Matlab Programming assignments, which may help you to solve your complex issues of Matlab Programming. TutorsGlobe assure for the best quality compliance to your homework. Compromise with quality is not in our dictionary. If we feel that we are not able to provide the homework help as per the deadline or given instruction by the student, we refund the money of the student without any delay.
www.tutorsglobe.com offers chemical reactivity homework help, chemical reactivity assignment help, online tutoring assistance, organic chemistry solutions by online qualified tutor's help.
www.tutorsglobe.com offers conic section homework help, conic section assignment help, online tutoring assistance, geometry mathematics solutions by online qualified math tutor's help.
tutorsglobe.com existence of large number of firms assignment help-homework help by online characteristics of monopolistic competition tutors
criteria for spontaneity tutorial all along with the key concepts of ternal energy change as a criterion for spontaneity, enthalpy change as a criterion for spontaneity, helmholtz free energy change, gibbs free energy change as a criterion for spontaneity, nernst heat theorem
tutorsglobe.com difference between particle and wave assignment help-homework help by online dual property of an electron tutors
tutorsglobe.com transmission electron microscopy assignment help-homework help by online light and electron microscope tutors
tutorsglobe.com life cycle of a phage assignment help-homework help by online viruses tutors
tutorsglobe.com food preservation assignment help-homework help by online food microbiology tutors
seismic sources tutorial all along with the key concepts of impact source, other impact sources, explosives, hammers , other impact sources, explosives, safety and time breaks
The vascular tissue system contains phloem and xylem. The xylem and phloem’s elements are all the time organized in groups.
tutorsglobe.com middle lamella assignment help-homework help by online structure of the cell wall tutors
tutorsglobe.com equilibrium-efficiency-theorems of welfare assignment help-homework help by online pure exchange and pareto optimality tutors
Nomenclature-Coordination number of complexes tutorial all along with the key concepts of IUPAC system of naming metal complexes, geometric isomers, Coordination number of metal complexes
Thermal Effects of Electric Currents and Electric Power tutorial all along with the key concepts of Current Power, Power in Electric Circuits, Power Dissipation in a Resistor, Joule's Law, Electromotive Force, Incandescent Lamp and Electrical Equivalent of Heat
tutorsglobe.com income effects assignment help-homework help by online comparative statics tutors
1943025
Questions Asked
3689
Tutors
1461425
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!