Respiration (Gaseous Exchange) in Animals
Introduction:
Whenever we breathe, we take in oxygen via our nostrils (that is, nose) and give out carbon-dioxide as waste product. We can live for weeks with no food, but we will die in a few minutes devoid of oxygen. Oxygen is employed to release energy stored in food which we consume in a procedure termed as respiration. Food includes carbohydrates, fats, proteins, minerals and water. Such food should be broken down to liberate energy in living cells.
The use of oxygen is to liberate energy as ATP (Adenosine triphosphate) in living cells is termed as cellular respiration. Cellular respiration comprises aerobic (in presence of oxygen) and anaerobic (devoid of oxygen) respiration.
Kinds of Respiratory systems and structures:
There are mainly four kinds of respiratory systems in animals as:
a) Body surfaces: In most of the unicellular organism example: amoeba and paramecium, gaseous exchange occurs via the plasma membrane through simple diffusion.
In flat worms, example: planaria the body surface has raised surface area to volume ration and brings the innermost cells close to the body surface. This lets the worms to get its oxygen need by simple diffusion.
b) Gill: They are special respiratory organs employed in aquatic atmosphere to absorb the oxygen.
Simple gills: These are external gills found in tadpoles, sea slugs, aquatic snails and numerous fishes. They are branched, permits increased surface area to be exposed for the gaseous exchange in water. They are rich with blood capillaries.
Complex gills: These gills are in the gill chambers (that is, opercullar cavities), there are two gills chambers located on each side of the head, just at the back of mouth.
Gills are enclosed by operculum. The direction of water-flow in fish is as expressed as:
Water → mouth → pharynx → gill chambers → out from opercular.
c) Tracheae: Tracheal system is situated in land arthropods. Air enters the body via openings termed as spiracles found all along the sides of the insect. In cockroach there are 10 pairs of spiracles. Spiracles lead to the tubes termed as tracheae, which branch into the trachioles. Trachioles includes fluid in which oxygen dissolves prior to it gets to individuals cell of the body. In flying insects the trachea build up into air sacs. The oxygen diffuses into cells, tissues and muscle.
d) Lungs:
It is mainly found in mammals. They are two, that is, left lungs and right lungs and are surrounded in the horax. In humans, air enters into the nostrils. The nostrils and mouth open into the pharynx, which branches into two; one leads to digestive tract whereas the other leads to the larynx (that is, voice box). The entrance into the larynx is termed as glottis. The larynx leads to the trachea those branches into bronchi which is the air tube which enters the lungs. Smaller air tubes are termed as bronchioles which finish in the air acs or alveoli.
Common features of Diffusion and Respiratory Structures:
The gases enter and leave the cells through diffusion. Gases should be dissolved in water before they can diffuse across the cell membranes. Thus respiratory structures encompass certain properties that enable them to carry out their functions. A few of these are:
1) Respiratory structures should encompass big gaseous exchange surface.
2) The membrane that the gas diffuses through should be thin.
3) They should have ventilation methods which maintains difference in the concentrations of the gases across the membrane (that is, to maintain a steep diffusion gradient).
4) Gaseous exchange system should be linked to the transport (that is, circulatory system).
Cutaneous (Skin) Respiration:
The skin of toad and frog is thin and well supplied along with blood vessels. The skin is kept moist via mucus, secreted by mucus gland. Oxygen diffuses via the moist skin to the blood vessels. The oxygen then joins with an oxygen carrying pigment termed as hemoglobin that is present in the blood. If the oxygen joins with hemoglobin, it forms oxy-hemoglobin. Oxy-hemoglobin is transported to all portions of the body after internal respiration; the carbon-dioxide generated in the cells diffuses to the blood and from the blood to the atmosphere.
This kind of respiration (cutaneous) occurs if the toad or frog is in water. Therefore dissolved oxygen in water diffuses via the skin to the blood capillaries and carbon-dioxide from blood diffuses into water. Cutaneous respiration can as well occur on land provided the skin moist.
Gaseous Exchange in Fish:
The gas exchange is more complicated for fish than for mammals as the concentration of dissolved oxygen in water is less than 1 percent as compared to 20 percent in air. Fish have developed specialized gas-exchange organs termed gills, which are comprised of thousands of filaments. The filaments in turn are enclosed in feathery lamellae which are just a few cells thick and have blood capillaries. This structure provides a large surface area and a short distance for the exchange of gas.
Water flows above the filaments and lamellae and oxygen can diffuse down a concentration gradient the short distance among water and blood, while carbon-dioxide diffuses in the opposite direction as well down its concentration gradient. Each and every gill is covered through a muscular flap (that is, the operculum) on the side of fish's head. The gills are so thin that they can't support themselves devoid of water, therefore when a fish is taken out of water after a while the gills will collapse, the SA/Vol ratio reduces and the fish suffocates.
Fish ventilate their gills to keep up the gas concentration gradient. Dissimilar mammals and birds having their 'push-pull' system of breathing, fish constantly pump water over their gills by moving their opercula and mouth, sucking in water from in front of fish, passing it over the gills and then pushing the 'stale' water behind.
The opercular valve makes sure the one-way flow which the high density of water needs. The gill lamellae are arranged as a sequence of flat plates sprouting from the gill arch. On their upper and lower surfaces there are numerous thin vertical flaps that comprise blood capillaries. The blood flows via such capillaries in the opposite direction to the flow of water above the gills. This is termed as counter-current flow system and provides a highly proficient diffusion pathway as the blood flows all along and picks up oxygen it meets up water that always consists of higher oxygen content than itself and the diffusion of oxygen into blood will be maintained.
Gaseous Exchange in Mammals:
In mammals, the gaseous exchange structure is the lungs which are enclosed in the thorax. Ventilation of the lungs comprises inspiration and expiration of the air. The ribcage, intercostals muscles and diaphragm work altogether to bring on ventilation of the lungs.
Inspiration: Air enters the lungs via the nostrils, leading to rise of the thoracic cavity and inflation of the lungs.
Expiration: Air flows out of the lungs to the external atmosphere and the thoracic cavity normalizes and deflates the lungs.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online biology tutoring. Chat with us or submit request at [email protected]
tutorsglobe.com laboratory diagnosis assignment help-homework help by online herpes viruses tutors
tutorsglobe.com different biological databases assignment help-homework help by online biological database tutors
Several problems come out while preparing segmental reports, not least of which is that of recognizing a segment. We have previously seen that the relevant IFRS recognizes operating segments as per to the internal monitoring and reporting procedures of the business.
tutorsglobe.com cuttings assignment help-homework help by online artificial technique of vegetative propagation tutors
tutorsglobe.com passive transport assignment help-homework help by online membrane transport tutors
Synthesis and Reactions of Coumarins tutorial all along with the key concepts of Physical and Chemical Properties of Coumarins, Reactions of Coumarins, Resonance structures of Coumarin and Synthesis of Coumarins
Nematodes tutorial all along with the key concepts of General features of Nematodes, Basic life-cycle of the main groups of Nematodes
highly qualified tutors are available 24x7 with prominent finite automata assignment help service and help to fetch top grades.
tutorsglobe.com utility and utility functions assignment help-homework help by online choices and preferences of consumer tutors
Vegetative Structure of Seed Plants-Root tutorial all along with the key concepts of Root Growth, Types of roots, Taproot system, Fibrous root system, Specialized Variations of Roots and Root architecture
Arthropoda Class-Chilopoda and Diplomoda tutorial all along with the key concepts of Characteristics of Chilopoda and Diplopoda, difference between chilopoda and diplomoda, Millipede, Centipede, features of Arachnida, Spiders and Scorpions
Movement of Water and Minerals tutorial all along with the key concepts of Moving Water and Mineral in the Xylem, Leaf Architecture, Structure of the Conducting Cells, Water Potential, Factors Affecting Transpiration
Transcription tutorial all along with the key concepts of Biosynthesis of RNA, DNA as Template for RNA Transcription, Transcription in Eucaryotes, Post-Transcriptional Processing of RNA, Differences between RNA-DNA
Phylum Mollusca tutorial all along with the key concepts of Features of Phylum Mollusca, Classification of Mollusca, Class Monoplacophora, Class Polyplacophora, Class Aplacophora, Class Gastropoda, Class Bivalvia, Class Scaphopoda and Class Cephalopoda
electron affinity tutorial all along with the key concepts of factors affecting electron affinity, periodicity in electron affinity, trends across periods, trend across groups, atomic radius, electronic configuration, effective nuclear charge
1931185
Questions Asked
3689
Tutors
1464224
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!