Why aryl halides are less reactive?

Aryl halides are much less reactive towards nucleophilic substitution reactions than haloalkanes. The less reactivity of aryl halides can be described as follows:


1. Withdrawal of electrons by Benzene and Stabilization by resonance:

In aryl halides, the electron pair of halogen atom is in conjugation with π electrons of benzene ring. Thus, halobenzene is a resonance hybrid of the following structures:

The contributing structures II, III and IV indicate that C-X bond has partial double character.

As a result, the C-X bond in halobenzene is shorter and hence, stronger as compared to that in alkyl halides. In chlorobenzene C-Clbond length is 1.69 Å as compared with 1.77 Å in methyl chloride. Thus, cleavage of C-X bond in halobenzene becomes difficult which makes it less reactive towards nucleophilic substitution.

2. Different hybrid state of carbon atom

In haloalkanes, the carbon atom bearing halogen is sp3 hybridized while halogen bearing carbon atom hybridized in halorens, sp3hybrid orbital is smaller in size due to greater s-character as compared with sp3 orbital. As a result bond formed by overlap of sp2 hybrid orbital is shorter in size and stronger than the bond formed by overlap of sp3 hybrid orbital. Therefore, C-X bond of haloalkanes is cleaved more easily than in haloalkanes by overlap of sp3 hybrid orbital. Therefore, C-X bond of haloalkanes is cleaved more easily than in haloarenes.

3. Polarity of C-X bond

The C-X bond in haloalkanes is more polar than the C-X bond in haloarenes. (This is supported by dipole moment of these bonds. Dipole moment of chlorobenzene is 1.7 D whereas that of haloalkanes falls in the range (2.0-2.2 D). So greater the polarity of bond hence higher is the reactivity.

The less polarity of C-X bond in aryl halides is due to the fact that electron withdrawing inductive effect of halogen is opposed by the electron releasing resonance effect, as is evident from the positive charge on X in stronger II, III and IV.

In a similar way we can explain the less reactivity of vinyl halides as compared with alkyl or allyl halides.

   Related Questions in Chemistry

  • Q : Surface Tension Vapour Pressure The

    The vapor pressure of small liquid drops depends on the drop size.

    Although the surface properties of a liquid are different from those of the bulk liquid, the special surface properties can be ignored except in a few situations. One is the case in which a liquid is dispersed into fine dr

  • Q : Chemistry brief discription of relative

    brief discription of relative lowering of vapour pressure

  • Q : Latent heat of vaporization Normal

    Normal butane (C4H10) is stored as a compressed liquid at 90°C and 1400 kPa. In order to use the butane in a low-pressure gas-phase process, it is throttled to 150 kPa and passed through a vaporizer. The butane emerges from the vaporizer as a

  • Q : Question related to molarity Help me to

    Help me to go through this problem. Molarity of a solution containing 1g NaOH in 250ml of solution: (a) 0.1M (b) 1M (c) 0.01M (d) 0.001M

  • Q : Law of vapour pressure Select the right

    Select the right answer of the question. "The relative lowering of the vapour pressure is equal to the mole fraction of the solute." This law is called: (a) Henry's law (b) Raoult's law (c) Ostwald's law (d) Arrhenius's law

  • Q : What is electrolytic dissociation? The

    The Debye Huckel theory shows how the potential energy of an ion in solution depends on the ionic strength of the solution.

    Except at infinite dilution, electrostatic interaction between ions alters the properties of the solution from those excepted from th

  • Q : Calculating total vapour pressure

    Select the right answer of the question. The vapour pressure of two liquids P and Q are 80 and 600 torr, respectively. The total vapour pressure of solution obtained by mixing 3 mole of P and 2 mole of Q would be: (a) 140 torr (b) 20 torr (c) 68 torr (d) 72 torr

  • Q : Neutralization of benzoic acid Choose

    Choose the right answer from following. How many grams of NaOH will be required to neutralize 12.2 grams of benzoic acid : (a) 40gms (b) 4gms (c)16gms (d)12.2gms

  • Q : Molarity of cane sugar solution 171 g

    171 g of cane sugar (C12H22O11)  is dissolved in one litre of water. Find the molarity of the solution: (i) 2.0 M (ii) 1.0 M (iii) 0.5 M (iv) 0.25 M

    Choose the right answer from above.

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu