Why aryl halides are less reactive?

Aryl halides are much less reactive towards nucleophilic substitution reactions than haloalkanes. The less reactivity of aryl halides can be described as follows:

1. Withdrawal of electrons by Benzene and Stabilization by resonance:

In aryl halides, the electron pair of halogen atom is in conjugation with π electrons of benzene ring. Thus, halobenzene is a resonance hybrid of the following structures:

The contributing structures II, III and IV indicate that C-X bond has partial double character.

As a result, the C-X bond in halobenzene is shorter and hence, stronger as compared to that in alkyl halides. In chlorobenzene C-Clbond length is 1.69 Å as compared with 1.77 Å in methyl chloride. Thus, cleavage of C-X bond in halobenzene becomes difficult which makes it less reactive towards nucleophilic substitution.

2. Different hybrid state of carbon atom

In haloalkanes, the carbon atom bearing halogen is sp3 hybridized while halogen bearing carbon atom hybridized in halorens, sp3hybrid orbital is smaller in size due to greater s-character as compared with sp3 orbital. As a result bond formed by overlap of sp2 hybrid orbital is shorter in size and stronger than the bond formed by overlap of sp3 hybrid orbital. Therefore, C-X bond of haloalkanes is cleaved more easily than in haloalkanes by overlap of sp3 hybrid orbital. Therefore, C-X bond of haloalkanes is cleaved more easily than in haloarenes.

3. Polarity of C-X bond

The C-X bond in haloalkanes is more polar than the C-X bond in haloarenes. (This is supported by dipole moment of these bonds. Dipole moment of chlorobenzene is 1.7 D whereas that of haloalkanes falls in the range (2.0-2.2 D). So greater the polarity of bond hence higher is the reactivity.

The less polarity of C-X bond in aryl halides is due to the fact that electron withdrawing inductive effect of halogen is opposed by the electron releasing resonance effect, as is evident from the positive charge on X in stronger II, III and IV.

In a similar way we can explain the less reactivity of vinyl halides as compared with alkyl or allyl halides.

   Related Questions in Chemistry



  • Q : Explain alcohols and phenols in organic

    Alcohols and phenols are the compounds

  • Q : Explain the polymers and its types.

    Polymers are the chief products of modern chemical industry which form the backbone of present society. Daily life without the discovery and varied applications of polymers would not have been easier and colourful. The materials made of polymers find multifarious uses and applications in all walk

  • Q : Molecular energies and speeds The

    The average translational kinetic energies and speeds of the molecules of a gas can be calculated.

    The result that the kinetic energy of 1 mol of the molecules of a gas is equal to 3/2 RT can be used to obtain numerical values for the

  • Q : Problem on Redlich-Kwong equation i)

    i) Welcome to Beaver Gas Co.! Your first task is to calculate the annual gross sales of our superpure-grade nitrogen and oxygen gases.

    a) The total gross sales of N2 is 30,000 units. Take the volume of the cylinder to be

  • Q : Calculating molarity of a solution

    Select the right answer of the question .The molarity of a 0.2 N N2Co3 solution will be: (a) 0.05 M (b) 0.2 M (c) 0.1 M (d)0.4 M

  • Q : Means of molal solution Choose the

    Choose the right answer from following. A molal solution is one that contains one mole of a solute in: (a) 1000 gm of the solvent (b) One litre of the solvent (c) One litre of the solution (d) 22.4 litres of the solution

  • Q : Units of Measurement Unit of


    Unit of measurement- These are also some systems for units:


  • Q : Molarity of HCl solution 20 ml of HCL

    20 ml of HCL solution needs 19.85 ml of 0.01M NaOH solution for complete neutralization. Morality of the HCL solution is:  (i) 0.0099 (ii) 0.099 (iii) 0.99 (iv) 9.9

    Choose the right answer from above.

  • Q : Question related to molarity Help me to

    Help me to go through this problem. Molarity of a solution containing 1g NaOH in 250ml of solution: (a) 0.1M (b) 1M (c) 0.01M (d) 0.001M