--%>

What is solvent dielectric effect? Explain with equation.

Ionic dissociation depends on the dielectric constant of the solvent.

The Arrhenius that ions are in aqueous solutions in equilibrium with parent molecular species allows many of the properties of ionic solutions to be understood. But difficulties began to arise after the initial acceptance of this ionic solution is to be understood. Ultimately the Arrhenius theory was attacked for the postulating molecules instead of ions in solutions of strong electrolytes. This was a dramatic reversal of the initial attacks on the Arrhenius theory which criticized it for postulating ions instead of undissolved molecules.

Refinements to the simplest ideas of the ionic solutions depend on the recognition of the role of the solvent and on the effect of interactions between the ions. 

A remarkable feature of the Arrhenius electrolytic dissociation theory is that although it attributes the dissociation process to the solution of the electrolyte, it proceeds to ignore the role of the solvent. It treats the solvent as if it were an inert, ignorable medium. A detailed understanding of the molecular nature of ionic solutions must involve the very important role played by the solvent. It is necessary, for instance, to understand why water is a unique solvent for ionic systems.

The electrostatic force of attraction between ions of charge Z+ and Z- is given by Coulomb's law:

For vacuum: ƒ(r) = Z+Z-[e2/4∏ε0)]/r2

For medium of dielectric ε/ε0: ƒ(r) = Z+Z-[e2/4∏ε0)]/(ε/ε0)r2

With the numerical values for e2/4∏ε0, the second of this equation is:

ƒ (r) = (2.307 × 10-28) Z+Z-/(ε/ε0)r2

For water, the dielectric constant factor ε/ε0 has the very large value of about 80. The force of interaction and the energy required to overcome coulombic forces are thus smaller by almost of very low dielectric. The easy dissociation of electrolytes in aqueous solutions compared with gaseous or low phase dielectric material is therefore understandable in terms of the high dielectric constant of water. The initial criticisms raised against the Arrhenius theory for postulating the dissociation of electrolysis in solution, however, remain valid arguments against any theory postulating appreciable dissociation to form free ions insolvents of low dielectric constant.

Although the dielectric effect is a major factor for the formation of ionic species in aqueous solutions, it is not great enough to reduce the intermolecular interaction to the small values found for gas phase molecules. We must therefore produce that for all but extremely dilute solutions, ionic interactions will not produce behavior found at infinite dilutes.

929_solvent dielectric.png 
A similar treatment of the activities themselves leads, again for one to one electrolytes, to the mean activity 1285_solvent dielectric1.png

Extension of this property lets activities and their coefficients be defined for electrolytes beyond the AB type. An AB2 electrolyte would dissociate according to 

AB2 = A2+ + 2B-

And the activity term that would appear in all thermodynamic treatments would be of form:

(aA2+) (aB-)2

   Related Questions in Chemistry

  • Q : Chemists have not created a periodic

    Explain the reason behind that the chemists have not created a periodic table of compounds?

  • Q : Molecular mass from Raoults law Provide

    Provide solution of this question. Determination of correct molecular mass from Raoult's law is applicable to: (a) An electrolyte in solution (b) A non-electrolyte in a dilute solution (c) A non-electrolyte in a concentrated solution (d) An electrolyte in a liquid so

  • Q : Explain Polyatomic Vibrational Spectra

    Polyatomic molecules vibrate in a number of ways, and some of these vibrations can be studied by infrared absorption spectroscopy and some by Raman spectroscopy. The characters of transformation matrices for all 3n translation rotation vibration motio

  • Q : Explain reactions of carbonyl oxygen

    In these reaction oxygen atom of carbonyl group is replaced by either one divalent group or two monovalent groups. Reaction by ammonia derivatives: aldehydes and ketones react with a number of ammonia derivatives such as hydroxylaminem hydrazine, semicarbazide etc. in weak acidic medium.

  • Q : What are haloalkanes and haloarenes and

    Alkyl halides or haloalkanes are the compounds in which a halogen is bonded to an alkyl group. They have the general formula RX (where R is alkyl grou

  • Q : How haloalkanes are prepared from

    This is the common method for preparing haloalkanes in laboratory. Alcohols can be converted to haloalkanes by substitution of - OH group with a halogen atom. Different reagents can be used to get haloa

  • Q : What do you mean by the term alum What

    What do you mean by the term alum? Also illustrate its uses?

  • Q : Modes of concentration Which of the

    Which of the given modes of expressing concentration is fully independent of temperature: (1) Molarity (2) Molality (3) Formality (4) Normality Choose the right answer from above.

  • Q : Solution density of water is 1g/mL.The

    density of water is 1g/mL.The concentration of water in mol/litre is

  • Q : DNA Organic Explain DNA organic in

    Explain DNA organic in brief?