--%>

What is solvent dielectric effect? Explain with equation.

Ionic dissociation depends on the dielectric constant of the solvent.

The Arrhenius that ions are in aqueous solutions in equilibrium with parent molecular species allows many of the properties of ionic solutions to be understood. But difficulties began to arise after the initial acceptance of this ionic solution is to be understood. Ultimately the Arrhenius theory was attacked for the postulating molecules instead of ions in solutions of strong electrolytes. This was a dramatic reversal of the initial attacks on the Arrhenius theory which criticized it for postulating ions instead of undissolved molecules.

Refinements to the simplest ideas of the ionic solutions depend on the recognition of the role of the solvent and on the effect of interactions between the ions. 

A remarkable feature of the Arrhenius electrolytic dissociation theory is that although it attributes the dissociation process to the solution of the electrolyte, it proceeds to ignore the role of the solvent. It treats the solvent as if it were an inert, ignorable medium. A detailed understanding of the molecular nature of ionic solutions must involve the very important role played by the solvent. It is necessary, for instance, to understand why water is a unique solvent for ionic systems.

The electrostatic force of attraction between ions of charge Z+ and Z- is given by Coulomb's law:

For vacuum: ƒ(r) = Z+Z-[e2/4∏ε0)]/r2

For medium of dielectric ε/ε0: ƒ(r) = Z+Z-[e2/4∏ε0)]/(ε/ε0)r2

With the numerical values for e2/4∏ε0, the second of this equation is:

ƒ (r) = (2.307 × 10-28) Z+Z-/(ε/ε0)r2

For water, the dielectric constant factor ε/ε0 has the very large value of about 80. The force of interaction and the energy required to overcome coulombic forces are thus smaller by almost of very low dielectric. The easy dissociation of electrolytes in aqueous solutions compared with gaseous or low phase dielectric material is therefore understandable in terms of the high dielectric constant of water. The initial criticisms raised against the Arrhenius theory for postulating the dissociation of electrolysis in solution, however, remain valid arguments against any theory postulating appreciable dissociation to form free ions insolvents of low dielectric constant.

Although the dielectric effect is a major factor for the formation of ionic species in aqueous solutions, it is not great enough to reduce the intermolecular interaction to the small values found for gas phase molecules. We must therefore produce that for all but extremely dilute solutions, ionic interactions will not produce behavior found at infinite dilutes.

929_solvent dielectric.png 
A similar treatment of the activities themselves leads, again for one to one electrolytes, to the mean activity 1285_solvent dielectric1.png

Extension of this property lets activities and their coefficients be defined for electrolytes beyond the AB type. An AB2 electrolyte would dissociate according to 

AB2 = A2+ + 2B-

And the activity term that would appear in all thermodynamic treatments would be of form:

(aA2+) (aB-)2

   Related Questions in Chemistry

  • Q : Utilization of glacial acetic acid What

    What is the utilization of glacial acetic acid? Briefly describe the uses.

  • Q : Law of multiple proportions and Law of

    Describe the difference between law of multiple proportions and law of definite proportions?

  • Q : Problem based on molarity Choose the

    Choose the right answer from following. The molarity of a solution of Na2CO3 having 10.6g/500ml of solution is : (a) 0.2M (b)2M (c)20M (d) 0.02M

  • Q : How haloalkanes are prepared from

    Alkyl halides can be prepared from alkanes through substitution and from alkenes through addition of halogen acids or through allylic substitution.    From alkanesWhen alkanes are treated with halogens, chlo

  • Q : Explain Rotational Vibrational Spectra

    The infrared spectrum of gas samples shows the effect of rotational-energy changes along with the vibrational energy change.As we know from the interpretations given to thermodynamic properties of gases, gas molecules are simultaneously rotating and vibrating. It follows that an absor

  • Q : Diffusion Molecular View When the

    When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.To see how the experimental coefficients can be treat

  • Q : What are halogen oxoacids? Fluorine

    Fluorine yields only one oxyacid, hypo

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu

  • Q : Describe physical adsorption and its

    When the forces of attraction existing between adsorbate and adsorbent are van der Waal's forces, the adsorption is called physical adsorption. This type of adsorption is also known as physisorption or van der Waal's adsorption. Since the forces existing between adsorbent and adsorbate are very w

  • Q : Calculating total number of moles

    Choose the right answer from following. While 90 gm of water is mixed with 300 gm of acetic acid. The total number of moles will be: (a)5 (b)10 (c)15 (d)20