--%>

What is solvent dielectric effect? Explain with equation.

Ionic dissociation depends on the dielectric constant of the solvent.

The Arrhenius that ions are in aqueous solutions in equilibrium with parent molecular species allows many of the properties of ionic solutions to be understood. But difficulties began to arise after the initial acceptance of this ionic solution is to be understood. Ultimately the Arrhenius theory was attacked for the postulating molecules instead of ions in solutions of strong electrolytes. This was a dramatic reversal of the initial attacks on the Arrhenius theory which criticized it for postulating ions instead of undissolved molecules.

Refinements to the simplest ideas of the ionic solutions depend on the recognition of the role of the solvent and on the effect of interactions between the ions. 

A remarkable feature of the Arrhenius electrolytic dissociation theory is that although it attributes the dissociation process to the solution of the electrolyte, it proceeds to ignore the role of the solvent. It treats the solvent as if it were an inert, ignorable medium. A detailed understanding of the molecular nature of ionic solutions must involve the very important role played by the solvent. It is necessary, for instance, to understand why water is a unique solvent for ionic systems.

The electrostatic force of attraction between ions of charge Z+ and Z- is given by Coulomb's law:

For vacuum: ƒ(r) = Z+Z-[e2/4∏ε0)]/r2

For medium of dielectric ε/ε0: ƒ(r) = Z+Z-[e2/4∏ε0)]/(ε/ε0)r2

With the numerical values for e2/4∏ε0, the second of this equation is:

ƒ (r) = (2.307 × 10-28) Z+Z-/(ε/ε0)r2

For water, the dielectric constant factor ε/ε0 has the very large value of about 80. The force of interaction and the energy required to overcome coulombic forces are thus smaller by almost of very low dielectric. The easy dissociation of electrolytes in aqueous solutions compared with gaseous or low phase dielectric material is therefore understandable in terms of the high dielectric constant of water. The initial criticisms raised against the Arrhenius theory for postulating the dissociation of electrolysis in solution, however, remain valid arguments against any theory postulating appreciable dissociation to form free ions insolvents of low dielectric constant.

Although the dielectric effect is a major factor for the formation of ionic species in aqueous solutions, it is not great enough to reduce the intermolecular interaction to the small values found for gas phase molecules. We must therefore produce that for all but extremely dilute solutions, ionic interactions will not produce behavior found at infinite dilutes.

929_solvent dielectric.png 
A similar treatment of the activities themselves leads, again for one to one electrolytes, to the mean activity 1285_solvent dielectric1.png

Extension of this property lets activities and their coefficients be defined for electrolytes beyond the AB type. An AB2 electrolyte would dissociate according to 

AB2 = A2+ + 2B-

And the activity term that would appear in all thermodynamic treatments would be of form:

(aA2+) (aB-)2

   Related Questions in Chemistry

  • Q : Acid value definition The acid value

    The acid value definition is the number milligrams of KOH needed to neutralize the acid present in one gram oil and fats however why not employ NaOH for the neutralization?

  • Q : Examples of reversible reaction

    Describe some examples of a reversible reaction?

  • Q : Determining highest normality What is

    What is the correct answer. Which of the given solutions contains highest normality: (i) 8 gm of KOH/litre (ii) N phosphoric acid (iii) 6 gm of NaOH /100 ml (iv) 0.5M H2SO4

  • Q : Molar mass of solute The boiling point

    The boiling point of benzene is 353.23 K. If 1.80 gm of a non-volatile solute was dissolved in 90 gm of benzene, the boiling point is increased to 354.11 K. Then the molar mass of the solute is: (a) 5.8g mol-1  (b)

  • Q : Problem based on molecular weight

    Select the right answer of the question. Molecular weight of urea is 60. A solution of urea containing 6g urea in one litre is : (a)1 molar (b)1.5 molar (c) 0.1 molar (d) 0.01 molar

  • Q : What is covalent radii? Explain its

    Average covalent radii can be assigned on the basis of molecular structures. The accumulation of structural data by spectroscopic studies and both electron and x-ray diffraction studies allows one to investigate the possibili

  • Q : Structure of a DNA molecule Elaborate

    Elaborate the structure of a DNA molecule?

  • Q : Problem on vapor-liquid equilibrium Two

    Two tanks which contain water are connected to each other through a valve. The initial conditions are as shown (at equilibrium): 683_tank question.jpg

  • Q : Problem on molality Select the right

    Select the right answer of the question. Calculate the molality of 1 litre solution of 93% H2SO4 (weight/volume). The density of the solution is 1.84 g /ml : (a) 10.43 (b) 20.36 (c) 12.05 (d) 14.05

  • Q : Procedure to judge that organic

    Describe briefly the procedure to judge that the given organic compound is pure or not?