--%>

What is solvent dielectric effect? Explain with equation.

Ionic dissociation depends on the dielectric constant of the solvent.

The Arrhenius that ions are in aqueous solutions in equilibrium with parent molecular species allows many of the properties of ionic solutions to be understood. But difficulties began to arise after the initial acceptance of this ionic solution is to be understood. Ultimately the Arrhenius theory was attacked for the postulating molecules instead of ions in solutions of strong electrolytes. This was a dramatic reversal of the initial attacks on the Arrhenius theory which criticized it for postulating ions instead of undissolved molecules.

Refinements to the simplest ideas of the ionic solutions depend on the recognition of the role of the solvent and on the effect of interactions between the ions. 

A remarkable feature of the Arrhenius electrolytic dissociation theory is that although it attributes the dissociation process to the solution of the electrolyte, it proceeds to ignore the role of the solvent. It treats the solvent as if it were an inert, ignorable medium. A detailed understanding of the molecular nature of ionic solutions must involve the very important role played by the solvent. It is necessary, for instance, to understand why water is a unique solvent for ionic systems.

The electrostatic force of attraction between ions of charge Z+ and Z- is given by Coulomb's law:

For vacuum: ƒ(r) = Z+Z-[e2/4∏ε0)]/r2

For medium of dielectric ε/ε0: ƒ(r) = Z+Z-[e2/4∏ε0)]/(ε/ε0)r2

With the numerical values for e2/4∏ε0, the second of this equation is:

ƒ (r) = (2.307 × 10-28) Z+Z-/(ε/ε0)r2

For water, the dielectric constant factor ε/ε0 has the very large value of about 80. The force of interaction and the energy required to overcome coulombic forces are thus smaller by almost of very low dielectric. The easy dissociation of electrolytes in aqueous solutions compared with gaseous or low phase dielectric material is therefore understandable in terms of the high dielectric constant of water. The initial criticisms raised against the Arrhenius theory for postulating the dissociation of electrolysis in solution, however, remain valid arguments against any theory postulating appreciable dissociation to form free ions insolvents of low dielectric constant.

Although the dielectric effect is a major factor for the formation of ionic species in aqueous solutions, it is not great enough to reduce the intermolecular interaction to the small values found for gas phase molecules. We must therefore produce that for all but extremely dilute solutions, ionic interactions will not produce behavior found at infinite dilutes.

929_solvent dielectric.png 
A similar treatment of the activities themselves leads, again for one to one electrolytes, to the mean activity 1285_solvent dielectric1.png

Extension of this property lets activities and their coefficients be defined for electrolytes beyond the AB type. An AB2 electrolyte would dissociate according to 

AB2 = A2+ + 2B-

And the activity term that would appear in all thermodynamic treatments would be of form:

(aA2+) (aB-)2

   Related Questions in Chemistry

  • Q : Molecular mass from Raoults law Provide

    Provide solution of this question. Determination of correct molecular mass from Raoult's law is applicable to: (a) An electrolyte in solution (b) A non-electrolyte in a dilute solution (c) A non-electrolyte in a concentrated solution (d) An electrolyte in a liquid so

  • Q : Particles of quartz Particles of quartz

    Particles of quartz are packed by:(i) Electrical attraction forces  (ii) Vander Waal's forces  (iii) Covalent bond forces  (iv) Strong electrostatic force of attraction Answer: (iii)

  • Q : Basic concept Give me answer of this

    Give me answer of this question. The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Question on seminormal solution Provide

    Provide solution of this question. The weight of sodium carbonate required to prepare 500 ml of a seminormal solution is: (a) 13.25 g (b) 26.5 g (c) 53 g (d) 6.125 g

  • Q : Avogadros hypothesis how avogadros

    how avogadros hypothesis used to deduce the atomicity of elementry gases ?

  • Q : Molar mass what is the equation for

    what is the equation for calculating molar mass of non volatile solute

  • Q : Benefits of soapy detergents over the

    What are the benefits of soapy detergents over the soap less detergents? Briefly state the benefits?

  • Q : What are biodegradable polymers?

      These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biod

  • Q : Modern periodic table and Mendeleevs

    Differentiate between the modern periodic table and Mendeleevs table?

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.