--%>

What is schrodinger wave equation?

The Schrodinger wave equation generalizes the fitting-in-of-waves procedure.

The waves that "fit" into the region to which the particle is contained can be recognized "by inspection" only for a few simple systems. For other problem a mathematical procedure must be used. The Schrodinger wave equation, suggested by Erwin Schrodinger in 1926, provides one method for doing this. You will see, when we again do the particle-on-a-line problem, that this equation extends the pictorial fitting-in-of-waves procedure.

Think of the method in which the Schrodinger equation is used as the counterpart of the more familiar classical parts in which Newton's laws are used. Recall that equations, such as ƒ = ma, based on Newton's law are presented without derivation. These laws let us calculate the dynamic behavior of ordinary objects. We accept Newton's laws and the equation derived from because the results are agree from experiment. Schrodinger's equation is also presented without derivation. We accept the results that we obtain by using it because in all cases where the results have been tested, they have been in agreement with experiment. Just as one uses and trusts ƒ = ma, so one must use and, to the extent that seems justified, trust the Schrodinger equation.

The Schrodinger equation, as with the direct use of the de Broglie waves, leads to waves from which all other information follows. From these waves, we obtain immediately the allowed energies of any confined particle and the probability of the particle being at various positions.

We begin by writing the form of the Schrodinger equation that lets us deduce the waves, and then the energies and position probabilities, for a particle that moves along one dimension. Let x be the variable that locates positions along this dimension. The behavior of the particle depends on the potential energy that it would have at various positions. Let U (x) be the mathematical function that describes the potential energy. The Schrodinger equation requires us to supply this function and to indicate the mass m of the particle being treated.

Solutions of the Schrodinger equation are in the form of mathematical functions that shows the amplitude of the wave at various x places. The square of this function gives the relative probability of the particles being at various positions. The energies for which these probabilities of the particles exist are the energies "allowed" to the particle.

The Schrodinger equation can be viewed as a method in which wave properties yield the total energy of a particle as the sum of its potential and kinetic energies. The potential energy contribution is given by the Schrodinger equation as a "weighting" of the potential energy at each position according to the value of the wave function at that position. The kinetic energy contribution of the first term can be appreciated by reference to the particle on a line results. The particle-on-a-line example produced the quite general result that waves for the highest energy of the wave function, the greater the kinetic energy, the greater the curvature of the wave function.

The general energy relation:

KE + PE = total energy

Becomes the one-dimensional Schrodinger equation;

-h2/8∏2m Χ d2?/dx2 + U(x)v = ε?

The potential energy contribution is given by the Schrodinger equation as a "weighting" of the potential energy at each position according to the value of the wave function amplitude at that position.

The kinetic-energy contribution fo the first term can be appreciated by reference to the particle-on-a-line results. The particle-on-a-line example produced the quite general result that the waves for the higher energy states had more nodes than the waves for the greater the curvature of the wave function, the greater the kinetic energy. This shows up in the Schrodinger equation as a relation between the second derivate of the wave function and the kinetic energy.

The behavior of a particle is deduced by finding a function and the kinetic energy will solve the differential equation after an appropriate expression for U (x) has been substituted. Solution functions generally exist for certain values for the allowed energies of the particle. The probability function also obtained from the solution function. In general may be either a real or a complex function. To allow for the second possibility, we should write not a sign but where implies the product of the wave function and its complex conjugate. Here we do not deal with problems that lead to complex wave functions. The probability is given by the simple squared term. 

   Related Questions in Chemistry

  • Q : What are diazonium salts? The diazonium

    The diazonium salts are represented by the general formula ArN2 +X where X- ion may be anion such as (Cl) ¨, B ¨r, HSO

  • Q : Henry law question Answer the following

    Answer the following qustion. The definition “The mass of a gas dissolved in a particular mass of a solvent at any temperature is proportional to the pressure of gas over the solvent” is: (i) Dalton’s Law of Parti

  • Q : Problem on normality Help me to solve

    Help me to solve this problem. 0.5 M of H2AO4 is diluted from 1 lire to 10 litre, normality of resulting solution is : (a)1 N (b) 0.1 N (c)10 N (d)11 N

  • Q : Question based on vapour pressure and

    Give me answer of this question. The vapour pressure of water at 20degreeC is 17.54 mm. When 20g of a non-ionic, substance is dissolved in 100g of water, the vapour pressure is lowered by 0.30 mm. What is the molecular weight of the substances: (a) 210.2 (b) 206.88

  • Q : Vapour pressure of water Give me answer

    Give me answer of this question. 5cm3 of acetone is added to 100cm3 of water, the vapour pressure of water over the solution: (a) It will be equal to the vapour pressure of pure water (b) It will be less than the vapour pressure of pure water

  • Q : Finding Molarity of final mixture Can

    Can someone help me in finding out the right answer. 25ml of 3.0 MHNO3 are mixed with 75ml of 4.0 MHNO3. If the volumes are adding up the molarnity of the final mixture would be: (a) 3.25M (b) 4.0M (c) 3.75M (d) 3.50M

  • Q : Describe the function of the

    Briefly describe the function of the monosaccharide?

  • Q : What is Elevation in boiling point? The

    The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with tempe

  • Q : Problem on decinormal strength Can

    Can someone please help me in getting through this problem. How many grams of dibasic acid (having mol. wt. 200) must be present in 100ml  of its aqueous solution to provide decinormal strength: (i) 1g  (ii)2g  (iii) 10g  (iv) 20g<

  • Q : DNA Organic Explain DNA organic in

    Explain DNA organic in brief?