What are halogen oxoacids?

Fluorine yields only one oxyacid, hypofluorous acid (HOF). Chlorine, bromine and iodine form four series of acids with formulae: HOX, HXO2, HXO3 and HXO4, although many of these are known only in solutions or as salts.
The Hypohalous acids HOCl, HOBr and HOI are weak acids and are only formed in aqueous solutions by disproportionation of the halogen of the halogen water

X2 + H21402_Phosphorus trichloride.png  HOX + HX (X = Cl, Br, I)

Salts of these acids are known as hypohalites, e.g. bleaching powder, CaOCl2 is a common example of this category.
The halic acids HClO3 and HBrO3 are also known as solutions, but iodic acid HIO3 exists as a white solid. Thus, the stability of acids increases with increase in atomic number of the halogen. These acids act as strong oxidizing agents, e.g. these oxidize halides to give halogens in acid medium.

OX3- + 5X- + 6H+  1402_Phosphorus trichloride.png  3X2 + 3H2O

The salts of these are called halates. Amongst the halates, sodium chlorate (NaClO3and potassium chlorate (KClO3are prepared on industrial scale. It is also known as 'Berthelot salt'. NaClO3 is a powerful weed killer, whilst KClO3 is used in fireworks and matches.
Perhalic acid i.e. perchloric, periodic acids as well as their salts perchlorates and periodates are known to exist. The perhalates (MXO4)are prepared by the electrolytic oxidation of the corresponding halates, MXO3.

4ClO3 1402_Phosphorus trichloride.png  Cl+ 3ClO4-

The disproportionation of BrO3- to BrO4- is unfavorable, therefore per bromates are obtained only by oxidation of BrO3- by F2 in basic solution.

BrO3- + F2 + 2OH-  1402_Phosphorus trichloride.png  BrO4+ 2F- + H2O

Acidic character of oxyacids: the variation in the acidic character of the halogen acids in different oxidation states are summarized below:
The acid strength of oxyacid of the same halogen increases with the increase in oxidation number of the halogen. For example, among the different oxyacids of chlorine the acidic character follows the order

HOCl < HClO2 < HClO3 < HClO4

Reason: the acid strength can be explained on the basis Lowry-Bronsted concept that conjucate base of weak and is strong and conjugate base of strong acid is weaker.

   Related Questions in Chemistry

  • Q : Problem on making solution Select the

    Select the right answer of the question. The weight of H2C2O42H2O required to prepare 500ml of 0.2N solution is : (a) 126g (b) 12.6g (c) 63g (d) 6.3g

  • Q : Amount of glucose in blood What is the

    What is the normal amount of glucose in 100ml of blood (8–12 hrs after meal) is: (i) 8mg (ii) 80mg (iii) 200mg (iv) 800mg

    Choose the right answer from above.

  • Q : Isotonic Solutions Which one of the

    Which one of the following pairs of solutions can we expect to be isotonic at the same temperature:
    (i) 0.1M Urea and 0.1M Nacl  (ii) 0.1M Urea and 0.2M Mgcl2  (iii) 0.1M Nacl and 0.1M Na2SO4  (iv) 0.1M Ca(NO3<

  • Q : P- block why pentahalids are more

    why pentahalids are more covalent than tetrahalids

  • Q : Chemistry brief discription of relative

    brief discription of relative lowering of vapour pressure

  • Q : Microwave Adsorption The absorption of

    The absorption of microwave radiation increases the rotational energy of molecules and gives information about the moment of inertia of the molecules.

    Now we can begin the study of the spectroscopy that explores the different ways in which the energy of the

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : Acid Solutions Choose the right answer

    Choose the right answer from following. Volume of water needed to mix with 10 ml 10N NHO3 to get 0.1 N HNO3: (a) 1000 ml (b) 990 ml (c) 1010 ml (d) 10 ml

  • Q : Film Mass Transport Sulfur trioxide

    Sulfur trioxide (SO3) is manufactured by the gas-phase oxidation of SO2 over a platinum catalyst:

    SO2 + ½ O2 à SO3

    The catalyst is a non-porous ext

  • Q : Symmetry Elements The symmetry of the

    The symmetry of the molecules can be described in terms of electrons of symmetry and the corresponding symmetry operations.

    Clearly some molecules, like H2O and CH4, are symmetric. Now w

2015 ©TutorsGlobe All rights reserved. TutorsGlobe Rated 4.8/5 based on 34139 reviews.