--%>

Undamped single degree of freedom

(a) The response for an undamped single degree of freedom system under free vibration is given as where ωn is the natural frequency and A and B are unknown that can be determined from the initial conditions. The response  can also be written as where φ is the phase angle.

Prove that C and φ are:

2071_single degree.jpg

where u(0) and ú (0) are the initial displacement and velocity, correspondingly

(b) Plot the solution given  in part (a) for the case k = 1000 N/m and m = 10 kg for two complete periods for all the following sets of initial situations

(i) u(0) = 0,  ú (0) = 1 m/s
(ii) u(0) = 0.01 m, ú (0) = 0
(iii) u(0) = 0.01 m, ú (0) = 1 m/s
 
(c) Make a three-dimensional surface plot of the amplitude C of an undamped oscillator given in part (a) versus u(0) and ú (0) for the range of initial conditions given by -1 ≤ u(0) ≤ 0.1 m and -1 ≤ ú (0) ≤ 1 m/s for a system with natural frequency of 10 rad/s. Based on the plot, determine the initial conditions that give the maximum and minimum amplitudes.

   Related Questions in Mechanical Engineering

  • Q : Working environment in Product design

    Working environment: The conditions under which the product is likely to be used, stored, and transported must be specified. The product may have to operate in conditions of extreme temperature, be subject to vibration, radiation; these conditions wil

  • Q : Calculate the surface area available

    You are working in a company that has developed a process to produce DNA vaccines from E.coli. After the fermentation step a lysis step is used to release the DNA from the cells resulting in a sticky mixture. You find that an aggressive cleaning solution heated to 80°C is required to

  • Q : Problem on mechanical efficiency of the

    The oil pump is drawing 25 kW of electric power while pumping oil with ρ = 860 kg/m3 at a rate of 0.1 m3/s. The inlet and outlet diameters of the pipe are of 8 cm and 12 cm, respectively. When the pressure rise of oil in the pump is measured to be 250 k

  • Q : Bearing number ti Diameter of inner and

    Specify how the Bearing number ti Diameter of the inner and outer can be calculated?

  • Q : Problem on Ideal gas process A) Air at

    A) Air at 4MPa and 3000C enters a will insulated turbine operating at steady state with negligible velocity. The air expands to an exit pressure of 100KPa. The exit velocity and temperature are 90 m/s and 1000C respectively. The diameter of the e

  • Q : What is Cotter joint Cotter joint :

    Cotter joint: These kinds of joints are employed to connect two rods that are under compressive or tensile stress. The ends of rods are in the way of a socket and shaft which fit altogether and the cotter is driven into a slot which is common to both

  • Q : Describe Process Flow Diagram Process

    Process Flow Diagram: A Process Flow Diagram or System Flow Diagram exhibits the relationships among the main components in the system. It too has fundamental information regarding the material balance for the process.

  • Q : SI Engines Illustrate why several types

    Illustrate why several types of the sound are generated in different bikes, although they run on the SI Engines?

  • Q : Cavitation elimination by Pump How

    How Cavitation is eliminated by the Pump?

  • Q : Calculating liquid composition There

    There is a 35% MeOH/water mix to feed to a flash at 100 Ib- mole /hr and 1 atm. We want a vapour composition of 60 % MeOH. What does the vapour flow rate need to be? What is the liquid composition? Give the equation of the operation line?

    Discover Q & A

    Leading Solution Library
    Avail More Than 1436217 Solved problems, classrooms assignments, textbook's solutions, for quick Downloads
    No hassle, Instant Access
    Start Discovering

    18,76,764

    1948171
    Asked

    3,689

    Active Tutors

    1436217

    Questions
    Answered

    Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!

    Submit Assignment

    ©TutorsGlobe All rights reserved 2022-2023.