--%>

Undamped single degree of freedom

(a) The response for an undamped single degree of freedom system under free vibration is given as where ωn is the natural frequency and A and B are unknown that can be determined from the initial conditions. The response  can also be written as where φ is the phase angle.

Prove that C and φ are:

2071_single degree.jpg

where u(0) and ú (0) are the initial displacement and velocity, correspondingly

(b) Plot the solution given  in part (a) for the case k = 1000 N/m and m = 10 kg for two complete periods for all the following sets of initial situations

(i) u(0) = 0,  ú (0) = 1 m/s
(ii) u(0) = 0.01 m, ú (0) = 0
(iii) u(0) = 0.01 m, ú (0) = 1 m/s
 
(c) Make a three-dimensional surface plot of the amplitude C of an undamped oscillator given in part (a) versus u(0) and ú (0) for the range of initial conditions given by -1 ≤ u(0) ≤ 0.1 m and -1 ≤ ú (0) ≤ 1 m/s for a system with natural frequency of 10 rad/s. Based on the plot, determine the initial conditions that give the maximum and minimum amplitudes.

   Related Questions in Mechanical Engineering

  • Q : Calculating liquid composition There

    There is a 35% MeOH/water mix to feed to a flash at 100 Ib- mole /hr and 1 atm. We want a vapour composition of 60 % MeOH. What does the vapour flow rate need to be? What is the liquid composition? Give the equation of the operation line?

    Q : Cavitation elimination by Pump How

    How Cavitation is eliminated by the Pump?

  • Q : Safe turbine operation For safe turbine

    For safe turbine operation how many governors are generally required and Why?

  • Q : Formulating equation of motion Figure

    Figure below shows a reinforced concrete framed building subjected to earthquake ground motion. The floor is rigid with the mass of each floor is shown in the figure. Formulate the equation of motion for this building. Prove that the natural frequenci

  • Q : Problem on displacement response time

    (i) Formulate the equation of motion for the system shown in Figure below. List two assumptions made in this formulation. (ii) Find the response of this system at t = 3s. The system begins with the displacement of 5 cm and velocity

  • Q : Formation of Cavitation Explain the

    Explain the reason behind formation of the Cavitation in the Centrifugal Pump and not in the Displacement Pump?

  • Q : Product performance in Product design

    Product performance: Depending on the product, this may take many forms. Speed, loads to be withstood, number of work cycles, and intermittent or continuous working are some examples of considerations. 

  • Q : Quantity in Product design specification

    Quantity: The total quantity of the product predicted and, more importantly, the production rates and batch sizes needed, should be specified. This will have implications for the types of manufacturing equipment and work organization necessary. It wil

  • Q : Modal Combination Rules What are the

    What are the Modal Combination Rules in order to determine the peak value of the total response?

  • Q : Problem on degree of freedom Draw a

    Draw a frequency-response curves for a damped single degree of freedom system subjected to a harmonic excitation under three different damping ratios. System has a natural frequency of ωn as the forcing frequency of the excitation is ω. Describe