--%>

Theory of three dimensional motion

Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition function is:

 
qtrans = Σ exp [- (n2x + n2y + n2z) h2/ (8ma2)/kT]  

= Σ exp [- n2x h2/ (8ma2)/kT] Σ exp [- n2y h2/ (8ma2)/kT] × Σexp [- n2z h2/ (8ma2)/kT]

= Σ exp [-n2x h2/(8ma2)/kT] Σ exp [-n2y h2/(8ma2)/kT] × Σexp [-n2z h2/(8ma2)/kT]

= qx qy qz

Each of the three partition function terms is like the one-dimensional term. We therefore can use:

qx = qy = qz = √∏/2 [kT/h2/(8ma2)] ½ 

to obtain, with V = a3,

qtrans = qx qy qz = (2∏mkT/h2)3/2 V

The Three dimensional translation energy: the three dimensional translation energy is derivative with respect to temperature can be used to reach an expression for the normal energy of three dimensional translational motions. Although qtrans depends on the particles and the volume of the container, the thermal energy (U - U0)trans has, for 1 mol of any gas in any volume the value 3/2 RT.

Distribution over quantum states: the distribution expressions for three dimensional motions can be derived by following the same procedure as we do for one dimensional motion before. First, however, we see that we can use one "effective" quantum number n in place of the three dimensional quantum numbers are nx, ny, and nz.

It is enough for us to deal with a quantity that shows the sum of the square of the equation of quantum numbers rather than with the individual values. We introduce the variable n defined by n2 = n2x + n2y + n2z.

Then the allowed energies are given instead of the more detailed manner than the previous one which we have done above. In using the effective quantum number n, we must recognize that there are number of states all with the same value of the energy. The display of states as point shows that, for large n, the additional number of states included when n increases by 1 is equal to 1/2πn2. Thus, if we use n as an effective quantum number, we must use gn = 1/2πn2.

Distribution over Quantum states: the distribution expressions for dimensional motion can be derived by following the same procedure as we did for one dimensional motion. First, however, we see that we can use one 'effective" quantum number n in place of the three quantum numbers nx, ny and nz.

(n2x + n2y + n2z) (h2/8ma2)

It is enough for us to deal with a quantity that shows the sum of the squares of the quantum numbers rather than with the individual values. We introduces the variable n defined by n2 = n2x + n2y + n2z. then the allowed energies are given by n2h2/(8ma2) instead of the more detailed, but no more useful, expression involving nx, ny and nz.

In using the effective quantum number n, we must recognize that there are a number of states all with the same value of n, or of energy εn. The number of states at this energy is the degeneracy gn. The display of states as points shows that, for large n, the additional number of states included when n increases by 1 is equal to ½ ∏n2. Thus if we use n as an effective quantum number we must use gn, ½ ∏n2 as the degeneracy.

   Related Questions in Chemistry

  • Q : Neutralization of benzoic acid Choose

    Choose the right answer from following. How many grams of NaOH will be required to neutralize 12.2 grams of benzoic acid : (a) 40gms (b) 4gms (c)16gms (d)12.2gms

  • Q : Solution problem What is the correct

    What is the correct answer. To made a solution of concentration of 0.03 g/ml of AgNO3, what quantity of AgNO3 must be added in 60 ml of solution: (a) 1.8  (b) 0.8  (c) 0.18  (d) None of these

  • Q : Problem on MM equation How to obtain

    How to obtain relation between Vm and Km,given k(sec^-1) = Vmax/mg of enzyme x molecular weight x 1min/60 sec S* = 4.576(log K -10.753-logT+Ea/4.576T).

  • Q : Sedimentation and Velocity The first

    The first method begins with a well defined layer, or boundary, of solution near the center of rotation and tracks the movement of this layer to the outside of the cell as a function of time. Such a method is termed a sedimentary velocity experiment. A

  • Q : What are Vander Waal's Radii? Vander

    Vander Waal's radii can be assigned to the atoms of molecules on the basis of the closeness of approach of these atoms in crystalline substances. Diffraction studies of crystals give information about hoe molecules can approach each other and can pack

  • Q : Colligative property problem Which is

    Which is not a colligative property: (a) Refractive index (b) Lowering of vapour pressure (c) Depression of freezing point (d) Elevation of boiling point    

  • Q : Problems related to entropy change A)

    A) Two compartments each of 1 m3 capacity are joined by a valve and insulated from the surroundings and from one another. One compartment has saturated steam at 683.6 kPa and the other contains steam at the same temperature but at a pressure of 101.3 kPa. T

  • Q : F-centres If a electron is present in

    If a electron is present in place of anion in a crystal lattice, then it is termed as: (a) Frenkel defect  (b) Schottky defect  (c) Interstitial defects (d) F-centre Answer: (d) When electrons are trapped in anion vacancies, thes

  • Q : Molarity in Nacl The molarity of 0.006

    The molarity of 0.006 mole of NaCl in 100 solutions will be: (i) 0.6 (ii) 0.06 (iii) 0.006 (iv) 0.066 (v) None of theseChoose the right answer from above.Answer: The right answer is (ii) M = n/ v(

  • Q : Which solution will have highest

    Which solution will have highest boiling point:(a) 1% solution of glucose in water  (b) 1% solution of sodium chloride in water  (c) 1% solution of zinc sulphate in water  (d) 1% solution of urea in waterAnswer: (b) Na