Problem on mechanical efficiency of the pump

The oil pump is drawing 25 kW of electric power while pumping oil with ρ = 860 kg/m3 at a rate of 0.1 m3/s. The inlet and outlet diameters of the pipe are of 8 cm and 12 cm, respectively. When the pressure rise of oil in the pump is measured to be 250 kPa and the motor efficiency is 90%, then find out the mechanical efficiency of the pump. Taking kinetic energy correction factor to be 1.05.

598_mechanical eff.jpg

E

Expert

Verified

Given:

Inlet Dia, Di = 8 cm = 8 x 10-2 m
Outlet Dia, Do = 12cm = 12 x10-2m

Density of oil,  δ = 80Kg /m3

Flow rate Q = 0.1 m3/s

Pressure rise = 250KPa = 250 x10-3 Pa

Power supplied to the pump = 25Kw = 25 x 10-3 w

Motor efficiency = .90

Kinetic energy correction factor, α= 1.05

Inlet area Ai= Π/4 x D12=-Π/4 x (8 x 10-2)2 = 0.0804 m2
Outlet area A0= Π/4 x D02 = Π/4 x (12 x10-2)2= 0.1809 m2

Average evolution 
Vi = Q/Ai = 0.1/ 0.804 = 1.1235 m/s
V0 = Q/A0 = 0.1/ 0.1809 = 0.5526 m/s

A note of kinetic energy correction factor

K. E correction factor, α = (K. E /See based on actual velocity) / (K. E / See based on average velocity)

The factor α is used when the flow is viscous.

Applying Bernoulli’s equation at the inlet (i) i outlet (0) of the pump.

Pi/ δg + α1 Vi2/ 2g +zi + HP= P0 /δg +α2 Vo2/2g + Z0 + Hf .

Given  αi= α2= α= 1.05     (Z0 –Zi is considered negligible)
HP = head added by the pump
Hf = head loss due to friction

H= HP – Hf = P0–Pi / δg + α ( V02-V12)/ 2g
    = 250 x 103 / 1000 x 9.81 + 1.05 / 2 x 9.81 (0.55262  - 1.2435)
    = 25.42 m

Power of the pump PP= δg QH
            = 1000 x9.81x 0.1 25.42
            = 24934.85 w
            = 24.934Kw

Mechanical efficiency of the pump:

Case (1)  ηm = power output/power input = 24.934/ 25 = 99%
Case (2)  if the  motor is to get 25Kw  considering its efficiency  the supply should be of 25/ 0.9 KW

ηm = 24.934/ (25/0.9) = 89.67%

   Related Questions in Mechanical Engineering

  • Q : What is pneumatic system Pneumatic

    Pneumatic system is a system which employs air to power something. For illustration, have you seen the tube systems at the bank drive-up tellers? Air is employed to push the tubes back and forth from the teller to customer.

    Q : Solution A pump station has been

    A pump station has been designed to lift water out of a 6 metre deep pit (vented to atmosphere) via a centrifigual pump mounted at ground level. Liquid conditions 20OC Suction pipe work losses 2.0 metres NPSH safety factor 5.0 kPa Vapor pressure @ 20oC 0.25 metres (a) Calculat

  • Q : Convection Heat Transfer Please Solve

    Please Solve this problem Step by step, and the question is in the images.

  • Q : Size and weight in Product design

    Size and weight: If the product is particularly small the cost may be increased if more precise manufacturing methods are demanded. Weight restriction will as well influence materials to be utilized: this in turn will influence the manufacturing proce

  • Q : Welding rod 7018 State abbreviation of

    State abbreviation of the welding rod 7018?

  • Q : High Discharge pump Why Centrifugal

    Why Centrifugal Pump is known as the High Discharge pump?

  • Q : Problem on head loss The pump

    The pump illustrated in the figure adds 20 kW of power to the flowing water. The only vital loss is that which takes place across the filter at the inlet of the pump. Find out the head loss for this filter. Note that the gage pressure upstream of the filter is negativ

  • Q : Quantity in Product design specification

    Quantity: The total quantity of the product predicted and, more importantly, the production rates and batch sizes needed, should be specified. This will have implications for the types of manufacturing equipment and work organization necessary. It wil

  • Q : Formulating equation of motion Figure

    Figure below shows a reinforced concrete framed building subjected to earthquake ground motion. The floor is rigid with the mass of each floor is shown in the figure. Formulate the equation of motion for this building. Prove that the natural frequenci

  • Q : Deareator In Thermal Power Plant, Why

    In Thermal Power Plant, Why Deareator is placed at the Height?

2015 ©TutorsGlobe All rights reserved. TutorsGlobe Rated 4.8/5 based on 34139 reviews.