--%>

Problem on mechanical efficiency of the pump

The oil pump is drawing 25 kW of electric power while pumping oil with ρ = 860 kg/m3 at a rate of 0.1 m3/s. The inlet and outlet diameters of the pipe are of 8 cm and 12 cm, respectively. When the pressure rise of oil in the pump is measured to be 250 kPa and the motor efficiency is 90%, then find out the mechanical efficiency of the pump. Taking kinetic energy correction factor to be 1.05.

598_mechanical eff.jpg

E

Expert

Verified

Given:

Inlet Dia, Di = 8 cm = 8 x 10-2 m
Outlet Dia, Do = 12cm = 12 x10-2m

Density of oil,  δ = 80Kg /m3

Flow rate Q = 0.1 m3/s

Pressure rise = 250KPa = 250 x10-3 Pa

Power supplied to the pump = 25Kw = 25 x 10-3 w

Motor efficiency = .90

Kinetic energy correction factor, α= 1.05

Inlet area Ai= Π/4 x D12=-Π/4 x (8 x 10-2)2 = 0.0804 m2
Outlet area A0= Π/4 x D02 = Π/4 x (12 x10-2)2= 0.1809 m2

Average evolution 
Vi = Q/Ai = 0.1/ 0.804 = 1.1235 m/s
V0 = Q/A0 = 0.1/ 0.1809 = 0.5526 m/s

A note of kinetic energy correction factor

K. E correction factor, α = (K. E /See based on actual velocity) / (K. E / See based on average velocity)

The factor α is used when the flow is viscous.

Applying Bernoulli’s equation at the inlet (i) i outlet (0) of the pump.

Pi/ δg + α1 Vi2/ 2g +zi + HP= P0 /δg +α2 Vo2/2g + Z0 + Hf .

Given  αi= α2= α= 1.05     (Z0 –Zi is considered negligible)
HP = head added by the pump
Hf = head loss due to friction

H= HP – Hf = P0–Pi / δg + α ( V02-V12)/ 2g
    = 250 x 103 / 1000 x 9.81 + 1.05 / 2 x 9.81 (0.55262  - 1.2435)
    = 25.42 m

Power of the pump PP= δg QH
            = 1000 x9.81x 0.1 25.42
            = 24934.85 w
            = 24.934Kw

Mechanical efficiency of the pump:

Case (1)  ηm = power output/power input = 24.934/ 25 = 99%
Case (2)  if the  motor is to get 25Kw  considering its efficiency  the supply should be of 25/ 0.9 KW

ηm = 24.934/ (25/0.9) = 89.67%

   Related Questions in Mechanical Engineering

  • Q : How do you repair a hydraulic jack How

    How do you repair a hydraulic jack?

  • Q : Preventing the excess discharge pressure

    How we can prevent the excess discharge pressure?

  • Q : Arena Are you able to assist with these

    Are you able to assist with these two assignments in Arena simulation below? You can use the Basic Process instead of Blocks and Elements. An office of state license bureau has two types of arrivals. Individuals interested in purchasing new plates are characterized to have inter-arrival times dis

  • Q : Problem on work of compression A diesel

    A diesel engine operates devoid of a spark plug by using the high-temperature gas produced throughout the compression stage to ignite the fuel. During a typical compression, pure air that is originally at 21 °C and 0.95 bar is reversibly and adiabatically compress

  • Q : Medium-sized turbine How pressure of

    How pressure of oil is managed when starting or stopping the medium-sized turbine?

  • Q : Energy in the home-personal energy

    Energy in the home personal energy use and home energy efficiency. Estimate your personal Annual Energy Usage for the following - list all data in kWh (KiloWatt hours):

  • Q : Define Product Design Specification

    Product Design Specification: Once the basic idea for a product has been made, the next step is to create a product design specification, or PDS. This document must be as comprehensive and as detailed as possible as it forms the basis of all the work

  • Q : Problem on mechanical efficiency of the

    The oil pump is drawing 25 kW of electric power while pumping oil with ρ = 860 kg/m3 at a rate of 0.1 m3/s. The inlet and outlet diameters of the pipe are of 8 cm and 12 cm, respectively. When the pressure rise of oil in the pump is measured to be 250 k

  • Q : Undamped single degree of freedom (a)

    (a) The response for an undamped single degree of freedom system under free vibration is given as where ωn is the natural frequency and A and B are unknown that can be determined from the initial conditions. The response 

  • Q : Aerospace Computational Techniques -

    Hello, I have a programming assignment that incorporates aerodynamics. I was wondering if it is possible to program the following assignment. If not, what would be the aerodynamic formulas required to do so. Thanks.