--%>

Problem on mechanical efficiency of the pump

The oil pump is drawing 25 kW of electric power while pumping oil with ρ = 860 kg/m3 at a rate of 0.1 m3/s. The inlet and outlet diameters of the pipe are of 8 cm and 12 cm, respectively. When the pressure rise of oil in the pump is measured to be 250 kPa and the motor efficiency is 90%, then find out the mechanical efficiency of the pump. Taking kinetic energy correction factor to be 1.05.

598_mechanical eff.jpg

E

Expert

Verified

Given:

Inlet Dia, Di = 8 cm = 8 x 10-2 m
Outlet Dia, Do = 12cm = 12 x10-2m

Density of oil,  δ = 80Kg /m3

Flow rate Q = 0.1 m3/s

Pressure rise = 250KPa = 250 x10-3 Pa

Power supplied to the pump = 25Kw = 25 x 10-3 w

Motor efficiency = .90

Kinetic energy correction factor, α= 1.05

Inlet area Ai= Π/4 x D12=-Π/4 x (8 x 10-2)2 = 0.0804 m2
Outlet area A0= Π/4 x D02 = Π/4 x (12 x10-2)2= 0.1809 m2

Average evolution 
Vi = Q/Ai = 0.1/ 0.804 = 1.1235 m/s
V0 = Q/A0 = 0.1/ 0.1809 = 0.5526 m/s

A note of kinetic energy correction factor

K. E correction factor, α = (K. E /See based on actual velocity) / (K. E / See based on average velocity)

The factor α is used when the flow is viscous.

Applying Bernoulli’s equation at the inlet (i) i outlet (0) of the pump.

Pi/ δg + α1 Vi2/ 2g +zi + HP= P0 /δg +α2 Vo2/2g + Z0 + Hf .

Given  αi= α2= α= 1.05     (Z0 –Zi is considered negligible)
HP = head added by the pump
Hf = head loss due to friction

H= HP – Hf = P0–Pi / δg + α ( V02-V12)/ 2g
    = 250 x 103 / 1000 x 9.81 + 1.05 / 2 x 9.81 (0.55262  - 1.2435)
    = 25.42 m

Power of the pump PP= δg QH
            = 1000 x9.81x 0.1 25.42
            = 24934.85 w
            = 24.934Kw

Mechanical efficiency of the pump:

Case (1)  ηm = power output/power input = 24.934/ 25 = 99%
Case (2)  if the  motor is to get 25Kw  considering its efficiency  the supply should be of 25/ 0.9 KW

ηm = 24.934/ (25/0.9) = 89.67%

   Related Questions in Mechanical Engineering

  • Q : Life expectancy in Product design

    Life expectancy: This part of the specification will state how long the product should remain in working order provided the customer gives reasonable care and maintenance. Also take into account technological advances and ongoing improvements that wou

  • Q : What is carnot engine Explain the term

    Explain the term Carnot engine?

  • Q : Safety in Product design specification

    Safety: The specifications should state the possible abuse and misuse the product might be subjected to. Warning labels and instructions on safe operation of the product should be given. The designer can be held accountable for any accidents that migh

  • Q : Formulating equation of motion Figure

    Figure below shows a reinforced concrete framed building subjected to earthquake ground motion. The floor is rigid with the mass of each floor is shown in the figure. Formulate the equation of motion for this building. Prove that the natural frequenci

  • Q : Laws of Thermodynamics Describe all the

    Describe all the laws of the Thermodynamics?

  • Q : Radial bearings Explain the importance

    Explain the importance to remember about the radial bearings?

  • Q : Define Mechanism Mechanism : The

    Mechanism: The mechanism is a system of moving parts which changes an input motion and force into the desired output force and motion.

  • Q : Centrifugal Pump and Reciprocating Pump

    Out of Centrifugal Pump or the Reciprocating Pump, which pump is more efficient?

  • Q : Problem on discharge of water In the

    In the below system, d = 6 in., D = 12 in., Δz1 = 6 ft, and Δz2 = 12 ft. The discharge of water in the given system is 10 cfs. Is the machine a turbine or a pump ? Determine the pressures at points A and B? Neglect head losses. Suppos

  • Q : Working environment in Product design

    Working environment: The conditions under which the product is likely to be used, stored, and transported must be specified. The product may have to operate in conditions of extreme temperature, be subject to vibration, radiation; these conditions wil