--%>

Problem on mechanical efficiency of the pump

The oil pump is drawing 25 kW of electric power while pumping oil with ρ = 860 kg/m3 at a rate of 0.1 m3/s. The inlet and outlet diameters of the pipe are of 8 cm and 12 cm, respectively. When the pressure rise of oil in the pump is measured to be 250 kPa and the motor efficiency is 90%, then find out the mechanical efficiency of the pump. Taking kinetic energy correction factor to be 1.05.

598_mechanical eff.jpg

E

Expert

Verified

Given:

Inlet Dia, Di = 8 cm = 8 x 10-2 m
Outlet Dia, Do = 12cm = 12 x10-2m

Density of oil,  δ = 80Kg /m3

Flow rate Q = 0.1 m3/s

Pressure rise = 250KPa = 250 x10-3 Pa

Power supplied to the pump = 25Kw = 25 x 10-3 w

Motor efficiency = .90

Kinetic energy correction factor, α= 1.05

Inlet area Ai= Π/4 x D12=-Π/4 x (8 x 10-2)2 = 0.0804 m2
Outlet area A0= Π/4 x D02 = Π/4 x (12 x10-2)2= 0.1809 m2

Average evolution 
Vi = Q/Ai = 0.1/ 0.804 = 1.1235 m/s
V0 = Q/A0 = 0.1/ 0.1809 = 0.5526 m/s

A note of kinetic energy correction factor

K. E correction factor, α = (K. E /See based on actual velocity) / (K. E / See based on average velocity)

The factor α is used when the flow is viscous.

Applying Bernoulli’s equation at the inlet (i) i outlet (0) of the pump.

Pi/ δg + α1 Vi2/ 2g +zi + HP= P0 /δg +α2 Vo2/2g + Z0 + Hf .

Given  αi= α2= α= 1.05     (Z0 –Zi is considered negligible)
HP = head added by the pump
Hf = head loss due to friction

H= HP – Hf = P0–Pi / δg + α ( V02-V12)/ 2g
    = 250 x 103 / 1000 x 9.81 + 1.05 / 2 x 9.81 (0.55262  - 1.2435)
    = 25.42 m

Power of the pump PP= δg QH
            = 1000 x9.81x 0.1 25.42
            = 24934.85 w
            = 24.934Kw

Mechanical efficiency of the pump:

Case (1)  ηm = power output/power input = 24.934/ 25 = 99%
Case (2)  if the  motor is to get 25Kw  considering its efficiency  the supply should be of 25/ 0.9 KW

ηm = 24.934/ (25/0.9) = 89.67%

   Related Questions in Mechanical Engineering

  • Q : Energy in the home-personal energy

    Energy in the home personal energy use and home energy efficiency. Estimate your personal Annual Energy Usage for the following - list all data in kWh (KiloWatt hours):

  • Q : Change of power in flow of kinetic

    Air at 20 m/s, 260 K, 75 kPa with 5 kg/s flows into a jet engine and it flows out at 500 m/s, 800 K, 75 kPa. What is the change (power) in flow of kinetic energy?

  • Q : Difference between pressure vessel &

    Difference between pressure vessel & column: The Pressure vessels (cylinder or tank) are utilized to store fluids under pressure. If the pressure vessel are design in the form of column to separate the gas at u

  • Q : Excitation of Modes in Fiber A

    A multimode fiber is used to couple light into a single mode fiber. Both fibers have the same total diameter. Explain the coupling. Use equations, MATLAB, etc. if necessary. If an LED is used to excite a single mode fiber, explain the coupling of light to the fiber? U

  • Q : Problem on mechanical efficiency of the

    The oil pump is drawing 25 kW of electric power while pumping oil with ρ = 860 kg/m3 at a rate of 0.1 m3/s. The inlet and outlet diameters of the pipe are of 8 cm and 12 cm, respectively. When the pressure rise of oil in the pump is measured to be 250 k

  • Q : What is pneumatic system Pneumatic

    Pneumatic system is a system which employs air to power something. For illustration, have you seen the tube systems at the bank drive-up tellers? Air is employed to push the tubes back and forth from the teller to customer.

    Q : Hard links Explain the term hard links?

    Explain the term hard links?

  • Q : Diesel Engine What will happen if the

    What will happen if the gasoline is used within the Diesel Engine, whether the Siesel Engine will work or not?

  • Q : What is carnot engine Explain the term

    Explain the term Carnot engine?

  • Q : Size and weight in Product design

    Size and weight: If the product is particularly small the cost may be increased if more precise manufacturing methods are demanded. Weight restriction will as well influence materials to be utilized: this in turn will influence the manufacturing proce