--%>

Problem on convection coefficient

An experiment to determine the convection coefficient associated with airflow over the surface of a thick stainless steel casting involves insertion of thermocouples in the casting at distances of 10 mm and 20 mm from the surface.  When the experiment was performed in a well insulated air duct so that the temperature of the walls surrounding the steel surface was the same as the air temperature, the thermocouples measured the temperatures of 50°C and 40°C in the steel, respectively, when the air and the surrounding wall temperatures were 200oC.

a) If the steel has a thermal conductivity of 15 W/m2K and surface emissivity of 0.95, what is the convection coefficient between the steel and hot air?

b) Determine the contributions of convective and radiation heat fluxes to steel casting?

In the recurring experiments the duct insulation was eliminated and even though the hot air temperature was similar as before, i.e., 200oC, the surrounding walls temperature dropped to 20oC. As a result the steady state heat flux to the steel casting dropped by 13.3% compared to the first experiment.

c) Supposing similar convection coefficient as the value coputed in part a), what would be the temperatures measured by the thermocouples?

d) Assume that the steel casting were well insulated from each and evry side except for the surface from which the distance to thermocouples is measured. Assuming the same convection coefficient as the value calculated in part a), what would be the temperatures of the thermocouples when:

i) The experiment is performed in the well insulated duct at T∞ = Tsurr = 200oC?
ii) The experiment is executed in non-insulated duct at T∞ = 100oC and Tsurr = 20oC?

   Related Questions in Chemistry

  • Q : Anti-aromatic and the non-aromatic

    What is main difference among anti-aromatic and the non-aromatic compounds?

  • Q : Vander Waals forces Wax is an example

    Wax is an example of: (a) Ionic crystal  (b) Covalent crystal  (c) Metallic crystal  (d) Molecular crystalAnswer: (d) Iodine crystals are molecular crystals, in which constituent particles are molecules having inter particle

  • Q : Calculating molarity of a solution

    Select the right answer of the question .The molarity of a 0.2 N N2Co3 solution will be: (a) 0.05 M (b) 0.2 M (c) 0.1 M (d)0.4 M

  • Q : Finding Normality Can someone please

    Can someone please help me in getting through this problem. Concentrated H2SO4 has a density of 1.98 gm/ml and is 98% H2SO4 by weight. The normality is: (a) 2 N  (b) 19.8 N  (c) 39.6 N  (d) 98

  • Q : Group Cations Explain how dissolving

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately

  • Q : Molecular Diameters The excluded volume

    The excluded volume b, introduced by vander Wall's as an empirical correction term, can be related to the size gas molecules. To do so, we assume the excluded volume is the result of the pairwise coming together of molecules. This assumption is justified when b values

  • Q : Dipole attractions for london dispersion

    Illustrate how are dipole attractions London dispersion forces and hydrogen bonding similar?

  • Q : Explain the preparation of phenols. The

    The methods used for the preparation of phenols are given below:    From aryl sulphonic acids

  • Q : Problem on colligative properties

    Choose the right answer from following. The magnitude of colligative properties in all colloidal dispersions is : (a) Lowerthan solution (b)Higher than solution(c) Both (d) None

  • Q : Number of mlecules in methane Can

    Can someone please help me in getting through this problem. The total number of molecules in 16 gm of methane will be: (i) 3.1 x 1023 (ii) 6.02 x 1023 (iii) 16/6.02 x 1023 (iv) 16/3.0 x 1023