Explain the mechanism of Enzyme Reactions.

A mechanism for enzyme-catalyzed reactions that leads to the typical rate equation for these reactions can be described.

A variety of rate equations are required to portray the rates of enzymes catalyzed reagents and physical conditions that are encountered. The rate equation of however, is a guide to many of these variations, and the mechanisms of this section, often called the Michaelis-Menten mechanism, is likewise a base for other variations.

The mechanism that accounts for the rate equation is similar to those dealt in with.

With S representing substrate, E the enzyme, and E. S and enzyme substrate complex, the mechanism is presumed to be adequately represented by 

E + S 376_Enzyme reactions.png E. S

E. S 376_Enzyme reactions.png E + products

The steady state assumption, which, however, is not always clearly applicable in these reactions, leads to

k1[E][S] = k-1[E. S] + k2[E. S]

And [E. S] = k1/k-1 + k2 [E][S]


To bring these expressions to a form that can be compared with the empirical rate equation, we must recognize that only [Etot] = [E] + [E. S], and not [E], is generally known. Often, in fact, only a quantity proportional to [Etot], and not even values of [Etot], is available.

Replacement of [E] in equation by [E] = [Etot] - [E. S] leads to

[E. S] = k1[Etot][S]/(k-1 + k2) + k1[S]

Now this expression for the intermediate E. S can be inserted into the expression for the rate of the net reaction. This rate can be based on the formation of products in the second mechanism step. We have

-d[S]/dt = R = k2[E. S] = k1k2[Etot][S]/k-1 + k2 + k1[S]

= k2[Etot][S]/k-1 + k2)/k1 + [S]

It is customary for the term (k-1 + k2)/k1 to be obtained by the new symbol KM, that is,

KM = k-1 + k2/k1 to give the rate equation result of this mechanism as

R = k2[Etot][S]/KM + [S]


We have come at this stage to the form of the empirical rate equation obtained, we are now in a position to intercept the values of the parameters KM and k2[Etotin terms of their roles in the roles in the steps of the mechanism.

Reference to equation shows that, as the reaction is proceeding

[E][S]/[E. S] = KM

Thus KM is related to species concentrations, as is the dissociation equilibrium constant for the species [E. S]. the value of KM, however, is given by (k...1 + k2)/k1, and this equal to the value of the dissociation constant for [E. S] only to the extent that k2 is small and can be neglected compared with k...1. Thus when the breakup of the E. S complex to form original E and S species dominates the process whereby the complex forms products, the value of KM approaches the dissociation constant for the E. S complex.

What, now, is the significance of the term k2[Etot]? One first notes that the rate of the overall reaction is

R = k2[E. S]

It follows that k2[Etot] is the rate that the reaction would have if all the enzyme were in the form of the enzyme-substrate complex. Thus k2[Etot] is the maximum rate for a given value of [Etot]. The turnover rate of an enzyme in a particular enzyme-catalyzed reaction is the rate per mole of enzyme, i.e. the turnover rate is equal to the value of k2, and this can be calculated fromk2[Etot] if the total enzyme concentration is known.

   Related Questions in Chemistry

  • Q : Problem on equilibrium composition The

    The catalytic dehydrogenation of 1-butene to 1,3-butadiene, C4H8(g) = C4H6(g)+H2(g) is carried out at 900 K and 1 atm.

    Q : Problem on MM equation How to obtain

    How to obtain relation between Vm and Km,given k(sec^-1) = Vmax/mg of enzyme x molecular weight x 1min/60 sec S* = 4.576(log K -10.753-logT+Ea/4.576T).

  • Q : Problem based on molality of glucose

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Mole 2.0gram of dolomite is heated to a

    2.0gram of dolomite is heated to a constant weight of 1.0g. Calculate the total volume of CO2 produced at STP by this reation

  • Q : P block bif3 is ionic while other

    bif3 is ionic while other trihalides are covalent in nature

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Mass percent Help me to go through this

    Help me to go through this problem. 10 grams of a solute is dissolved in 90 grams of a solvent. Its mass percent in solution is : (a) 0.01 (b) 11.1 (c)10 (d) 9

  • Q : Problem based on molarity Choose the

    Choose the right answer from following. The molarity of a solution of Na2CO3 having 10.6g/500ml of solution is : (a) 0.2M (b)2M (c)20M (d) 0.02M

  • Q : Define Virial Equation The constant of

    The constant of vander Waal's equation can be related to the coefficients of the virial equation.  Vander Waal's equation provides a good overall description of the real gas PVT behaviour. Now let us

  • Q : Vapour pressure Vapour pressure of

    Vapour pressure of methanol in water Give me answer of this question. An aqueous solution of methanol in water has vapour pressure: (a) Equal to that of water (b) Equal to that of methanol (c) More than that of water (d) Less than that of water

©TutorsGlobe All rights reserved 2022-2023.