--%>

Explain Schroedingers cat

Schroedinger's cat (E. Schroedinger; 1935): A thought experiment designed to exemplify the counterintuitive and strange ideas of reality that come all along with the quantum mechanics.

A cat is sealed within a closed box; the cat has plenty air, food, and water to stay alive in an extended period. This box is designed in such a way that no information (that is, sight, sound, and so on) can pass into or out of the box -- the cat is completely cut off from your observations. Also within the box with the poor kitty (it seems that Schroedinger was not too fond of felines) is a phial of a gaseous poison, and an automatic mallet to break it, flooding the box and murder the cat. The mallet is hooked up to a Geiger counter; this counter is observing a radioactive sample and is designed to trigger the mallet killing the cat -- must a radioactive decay be noticed. The sample is selected so that after, say, 1 hr., there stands a 50-50 chance of a decay happening.

The question is what is the state of the cat after that 1 hr has gone? The intuitive reply is that the cat is either alive or dead; however you do not know which awaiting you look. However it is one of them. The quantum mechanics, on other hand, states that the wave-function explaining the cat is in a superposition of states: the cat is, however, 50% alive and 50% dead; it is both. Not until one looks and "collapses the wave-function" is the Universe forced to prefer either a live cat or a dead cat and not somewhat in between.

This point out that observation also appears to be a significant portion of the scientific procedure quite a departure from the extremely objective, deterministic way things employed to be with Newton.

   Related Questions in Physics

  • Q : Define Doppler Effect Doppler Effect

    Doppler Effect (C.J. Doppler): The waves emitted by a moving object as received by an observer will be blue shifted (compressed) when approaching, redshifted (that is, elongated) if receding. This takes place both in sound and also el

  • Q : Balanced field takeoff Describe the

    Describe the process of balanced field takeoff in brief?

  • Q : What is the turnover number of the

    What is the turnover number of the enzyme? Is that forever an evaluation parameter of the action or activity of the enzyme?

  • Q : Define Tesla or SI unit of the magnetic

    Tesla: T (after N. Tesla, 1870-1943): The derived SI unit of the magnetic flux density stated as the magnetic flux density of a magnetic flux of 1 Wb via an area of 1 m2; it therefore has units of Wb/m2.

  • Q : What is Standard quantum limit Standard

    Standard quantum limit: It is the limit obligatory on standard techniques of measurement by the uncertainty principle in quantum mechanics.

  • Q : What is Refraction law Refraction law:

    Refraction law: For a wave-front travelling via a boundary among two media, the first with a refractive index of n1, and the other with one of n2, the angle of incidence theta is associated to the angle of refraction phi by:

  • Q : Kirchhoffs rules or Loop rule or Point

    Explain Kirchhoff's rules or Kirchhoff's Loop rule and Point rule? Kirchhoff's rules (G.R. Kirchhoff) <

  • Q : What is Lawson criterion Lawson

    Lawson criterion (J.D. Lawson): This is the condition for the discharge of energy from a thermonuclear reactor. This is usually stated as the minimum value for the product of the density of the fuel particles and the energy imprisonme

  • Q : Concept of nuclear reaction Describe in

    Describe in brief the concept of nuclear reaction?

  • Q : Describe Wiedemann-Franz law

    Wiedemann-Franz law: It is the ratio of the thermal conductivity of any pure metal (substance) to its electrical conductivity is just about constant for any specified temperature. This law holds pretty well apart from at low temperatures.