--%>

Explain Schroedingers cat

Schroedinger's cat (E. Schroedinger; 1935): A thought experiment designed to exemplify the counterintuitive and strange ideas of reality that come all along with the quantum mechanics.

A cat is sealed within a closed box; the cat has plenty air, food, and water to stay alive in an extended period. This box is designed in such a way that no information (that is, sight, sound, and so on) can pass into or out of the box -- the cat is completely cut off from your observations. Also within the box with the poor kitty (it seems that Schroedinger was not too fond of felines) is a phial of a gaseous poison, and an automatic mallet to break it, flooding the box and murder the cat. The mallet is hooked up to a Geiger counter; this counter is observing a radioactive sample and is designed to trigger the mallet killing the cat -- must a radioactive decay be noticed. The sample is selected so that after, say, 1 hr., there stands a 50-50 chance of a decay happening.

The question is what is the state of the cat after that 1 hr has gone? The intuitive reply is that the cat is either alive or dead; however you do not know which awaiting you look. However it is one of them. The quantum mechanics, on other hand, states that the wave-function explaining the cat is in a superposition of states: the cat is, however, 50% alive and 50% dead; it is both. Not until one looks and "collapses the wave-function" is the Universe forced to prefer either a live cat or a dead cat and not somewhat in between.

This point out that observation also appears to be a significant portion of the scientific procedure quite a departure from the extremely objective, deterministic way things employed to be with Newton.

   Related Questions in Physics

  • Q : Define Grandfather paradox Grandfather

    Grandfather paradox: The paradox proposed to discount time travel and exhibit why it violates causality. State that your grand-father makes a time machine. In the current time, you employ his time machine to go back in time a few decades to a point be

  • Q : Radioactive dating-Determining of age

    In the radioactive dating we use half life to find out the age of a sample however not average life why? Describe.

  • Q : Formula for acceleration What is the

    What is the appropriate formula employed to compute the acceleration? Explain in brief.

  • Q : Define Pascal or SI unit of pressure

    Pascal: Pa The derived SI unit of pressure stated as 1 N acting over a region of 1 m2; it therefore has units of N/m2

  • Q : What is Cosmic censorship conjecture

    Cosmic censorship conjecture (R. Penrose, 1979): The conjecture, so far wholly undemonstrated in the context of general relativity, that all singularities (that is with the possible exception of the big bang singularity) are attended

  • Q : Explain Stern-Gerlach experiment

    Stern-Gerlach experiment (O. Stern, W. Gerlach; 1922): The experiment which explains the features of spin (that is intrinsic angular momentum) as a different entity apart from the orbital angular momentum.

  • Q : Define Gauss law Gauss' law (K.F.

    Gauss' law (K.F. Gauss): The electric flux via a closed surface is proportional to the arithmetical sum of electric charges contained in that closed surface; in its differential form, div E = rho,

  • Q : Write a short note on diffuse reflection

    Write a short note on diffuse reflection?

  • Q : Define Faint Faint , young sun paradox

    Faint, young sun paradox: The theories of stellar evolution point out that as stars mature on the main series, they grow gradually hotter and brighter; computations propose that at as regards the time of the formation of Earth, the Su

  • Q : Define Fermats principle Fermat's

    Fermat's principle: principle of least time (P. de Fermat): The principle, put onward by P. de Fermat that explains the path taken by a ray of light among any two points in a system is for all time the path which takes the least time.