--%>

Explain Schroedingers cat

Schroedinger's cat (E. Schroedinger; 1935): A thought experiment designed to exemplify the counterintuitive and strange ideas of reality that come all along with the quantum mechanics.

A cat is sealed within a closed box; the cat has plenty air, food, and water to stay alive in an extended period. This box is designed in such a way that no information (that is, sight, sound, and so on) can pass into or out of the box -- the cat is completely cut off from your observations. Also within the box with the poor kitty (it seems that Schroedinger was not too fond of felines) is a phial of a gaseous poison, and an automatic mallet to break it, flooding the box and murder the cat. The mallet is hooked up to a Geiger counter; this counter is observing a radioactive sample and is designed to trigger the mallet killing the cat -- must a radioactive decay be noticed. The sample is selected so that after, say, 1 hr., there stands a 50-50 chance of a decay happening.

The question is what is the state of the cat after that 1 hr has gone? The intuitive reply is that the cat is either alive or dead; however you do not know which awaiting you look. However it is one of them. The quantum mechanics, on other hand, states that the wave-function explaining the cat is in a superposition of states: the cat is, however, 50% alive and 50% dead; it is both. Not until one looks and "collapses the wave-function" is the Universe forced to prefer either a live cat or a dead cat and not somewhat in between.

This point out that observation also appears to be a significant portion of the scientific procedure quite a departure from the extremely objective, deterministic way things employed to be with Newton.

   Related Questions in Physics

  • Q : What is Arago spot What is  Arago

    What is Arago spot? The bright spot which appears in the shadow of a consistent disc being backlit by monochromatic light originating from a point source. &n

  • Q : Define Planck equation Planck equation:

    Planck equation: The quantum mechanical equation associating to the energy of a photon E to its frequency nu: E = h nu.

  • Q : Explain Michelson-Morley experiment

    Michelson-Morley experiment (A.A. Michelson, E.W. Morley; 1887): Probably the most famous null-experiment of all time, designed to confirm the existence of the proposed "lumeniferous aether" via which light waves were considered to pr

  • Q : What is Permeability of free space or

    Permeability of free space: magnetic constant: mu_0: The ratio of the magnetic flux density in the substance to the external field strength for vacuum. It is equivalent to 4 pi x 10-7 H/m.

  • Q : Dynamic strain aging and the strain

    What is the basic difference among the dynamic strain aging and the strain aging?

  • Q : Explain Curie-Weiss law Curie-Weiss law

    Curie-Weiss law (P. Curie, P.-E. Weiss): A more broad form of Curie's law that states that the susceptibility, khi, of a paramagnetic substance is associated to its thermodynamic temperature T by the equation:

    Q : Explain Ideal gas equation Ideal gas

    Ideal gas equation: The equation that sums up the ideal gas laws in one simple equation, P V = n R T, Here V is the volume, P is the pressure, n is the

  • Q : Explain avogadro's hypothesis

    Avogadro's hypothesis (Count A. Avogadro; 1811): Equivalent volumes of all gases at similar temperature and pressure contain equivalent numbers of molecules. This is, in fact, true only for the ideal gases.  <

  • Q : What is Bernoulli's equation

    Bernoulli's equation - In an ir-rotational fluid, the sum of static pressure, the weight of the fluid per unit mass times the height and half of the density times the velocity squared is steady all through the fluid 

  • Q : Biot-Savart law Biot-Savart law (J.B.

    Biot-Savart law (J.B. Biot, F. Savart) - The law which explains the contributions to the magnetic field by an electric current. This is analogous to the Coulomb's law. Mathematically: dB = (mu0 I)/(4 pi r2) dl cross e