--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : Why Cadmium rods are given in a nuclear

    Cadmium rods are given in a nuclear reactor. Explain why?

  • Q : Explain Davisson-Germer experiment

    Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.

  • Q : Define Mole or SI unit of substance

    Mole: mol: The basic SI unit of substance, stated as the quantity of substance which contains as many elementary units (that is, atoms, molecules, ions, and so forth) as there are atoms in 0.012 kg of carbon-12.

  • Q : Define Ehrenfest paradox Ehrenfest

    Ehrenfest paradox (Ehernfest, 1909): The special relativistic "paradox" including a fast rotating disc. As any radial segment of the disc is perpendicular to the direction of motion, there must be no length contraction of the radius;

  • Q : Law of Machines Describe briefly all

    Describe briefly all the Law of Machines?

  • Q : Collision & Transition State Theory

    Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions. b)      Calculate the temperature wh

  • Q : Kinematics why rockets are also called

    why rockets are also called as projectile

  • Q : Problem on multiplexed channels 4

    4 channels, two with a bit-rate of 200 kbps and two with a bit-rate of 150 Kbps are to be multiplexed employing multiple slots TDM with no sync bits. a. Find out the size of a frame in bits?

    Q : Define Pauli Exclusion Principle Pauli

    Pauli Exclusion Principle (W. Pauli; 1925): No two similar fermions in a system, like electrons in an atom, can contain an identical set of the quantum numbers.

  • Q : Meaning of Network Define the meaning

    Define the meaning of Network in brief.