--%>

Explain Rotational Vibrational Spectra

The infrared spectrum of gas samples shows the effect of rotational-energy changes along with the vibrational energy change.

As we know from the interpretations given to thermodynamic properties of gases, gas molecules are simultaneously rotating and vibrating. It follows that an absorption spectrum or the Raman spectrum of a gas might show the effects of changes in both rotational and vibrational energies. The expanded view of the infrared absorption band of HCl shows the band structure that must be attributed to the rotational energy changes accompanying this fundamental, v = 0 to v =1, vibrational transition.

The rigid-rotor and harmonic-oscillator expressions can be combined to give the rotation vibration allowed energy expression

εrot-vib = (v + 1/2)hvvib + BJ(J + 1) v = 0, 1, 2 ...; J = 0, 1, 2 ....

The energy pattern that includes only the v = 0 and v = 1 levels and a few of the rotational levels for each vibrational state.

Analysis of the absorption spectrum for gas-phase molecules for which the energy expression applies can be made on the basis of this energy pattern and the selection rules that govern the transitions. Again the rules Δv = ±1 and ΔJ = ±1 hold, and while only Δv = ±1 and ΔJ = -1 are now possible. Transitions allowed by these rules are included.

The energies of the various transitions are determined by the rotation vibration energy expressions. In each case the vibrational contribution is given by hvvib. The rotational contributions are obtained and the J value in the v = 0 state, which determines the J value in thev = 1 state. Expressions for the energies of the components of an HCl type of rotation vibration band. Now, the transition lines have been placed on the diagram in order of increasing ε, or v?, from left to right. They thus are obtained as the expected components of a rotation-vibration band.

This analysis leads to a set of equally spaced components of the spectral band at either side of the band center. The spacing can be identified as 2B?. At the band center a gap equal to 4B?occurs. All these features are generally borne out by the rotation vibration band of HCl.

The lower frequency side of a rotation vibration band is known as the P branch, and the high frequency side as the R branch. In some cases, but not in the HCl type of spectrum, a central branch known as the Q branch occurs.

This analysis shows that a measurement of the spacing of the components of a value for the moment of inertia I. values so obtained are often not as precisely determined as those from microwave studies of pure rotational spectra, but the infrared region is more easily accessible. A similar analysis of the rotation vibration band structure could be carried through for Raman bands.

Dependence of bond length on vibrational state: now it is time to admit, that the spacing between the components of a rotation vibration band is not, in fact, constant. The rigid rotor harmonic oscillator model can be easily modified so that the observed spreading out of the P branch and closing up of the R branch can be accounted for. We recognize that the average bond length in the v = 1 vibrational state. (You might even anticipate that the average bond length in the v = 1vibrational state need not to be identical to the average bond length in the v = 0 state. If the bond length is different in different vibrational states, so also are the moment of inertia and the rotational constant B. let us denote the rotational constant for the ground v = 0 sate by B0 and that for the v = 1 state by B1. Now the spacing between the components of a rotation vibration band depends on hvvib and on both B0 and B1. The energy change for the first line of the Rbranch, for example, is hvvib + 2B1, and that of the second line is hvvib + 6B1 - 2B0. Thus, the spacing between these lines is 2(2B1 - B0). The spacing between the next two lines of the Rbranch is 2(3B1 - 2B0). Thus, in general, the spacing between successive pairs of lines of the Rbranch and the P branch will depend on B1 and B0 and will be constant only if B1 = B0. In spite of this added complexity, the value of B1 and B0 can be easily by modifying the graphical treatment.

The energy of difference between pairs of transitions that start at the same J level of the v = 0state can be used to deduce B1, the rotational constant for the v = 1 state. The energy difference between pairs of transitions that end at the same J level of the v = 1 state that gives result for B1 and pairs that give results for B0. Additional pairs can be treated, and average values of B1 and B0 can be obtained for all suitable component pairs. The validity of the model is determined by the constancy of the values for B1 and B0 obtained from the various component pairs. 

   Related Questions in Chemistry

  • Q : Calculating weight of acid Give me

    Give me answer of this question. The formula weight of H2SO4 is 98. The weight of the acid in 400mi of solution is: (a)2.45g (b) 3.92g (c) 4.90g (d) 9.8g

  • Q : Polymers comparison of biodegradable

    comparison of biodegradable and non-biodegradable polymers

  • Q : What are electromotive force in

    The main objective of this particular aspect of Physical Chemistry is to examine the relation between free energies and the mechanical energy of electromotive force of electrochemical cells. The ionic components of aqueous solutions can be treated on the basis of the

  • Q : Degree of dissociation The degree of

    The degree of dissociation of Ca(No3)2 in a dilute aqueous solution containing 14g of the salt per 200g of water 100oc is 70 percent. If the vapor pressure of water at 100oc is 760 cm. Calculate the vapor pr

  • Q : Problem on endothermic or exothermic At

    At low temperatures, mixtures of water and methane can form a hydrate (i.e. a solid containing trapped methane). Hydrates are potentially a very large source of underground trapped methane in the pole regions but are a nuisance when they form in pipelines and block th

  • Q : Colligative property related question

    Select the right answer of the question. Which of the following is not a colligative property : (a) Osmotic pressure (b) Elevation in B.P (c) Vapour pressure (d) Depression in freezing point

  • Q : Isotonic Solutions Which one of the

    Which one of the following pairs of solutions can we expect to be isotonic at the same temperature:(i) 0.1M Urea and 0.1M Nacl  (ii) 0.1M Urea and 0.2M Mgcl2  (iii) 0.1M Nacl and 0.1M Na2SO4  (iv) 0.1M Ca(NO3<

  • Q : Determining highest normality What is

    What is the correct answer. Which of the given solutions contains highest normality: (i) 8 gm of KOH/litre (ii) N phosphoric acid (iii) 6 gm of NaOH /100 ml (iv) 0.5M H2SO4

  • Q : How to calculate solutions ionic

    Transference numbers and molar conductors can be used to calculate ionic mobilities. This tables under is giving the transference numbers for positive ions at 25 degree C and the values obtained by extrapolation to infinite dilution:

    Q : Finding strength of HCL solution Can

    Can someone please help me in getting through this problem. 1.0 gm of pure calcium carbonate was found to require 50 ml of dilute  HCL for complete reaction. The strength of the HCL  solution is given by: (a) 4 N  (b) 2 N  (c) 0.4 N  (d) 0.2 N