--%>

Computers playing games

How Computers playing games can be categorized according to different dimensions?

E

Expert

Verified

Computers playing games:

Competing against each other in the form of a game is nothing new. Egyptians and Chinese have archived games which date back to far before the year zero. Games can be categorized according to different dimensions. Three examples are:

(1) the number of players,

(2) whether chance is involved, and

(3) how many information a player has.

With the upcoming of computers human beings were tempted to let the computer play those games. The reason why scientists are interested in research on board games is that the rules of games are mostly exact and well defined which makes it easy to translate them to a program that is suitable for a computer to run (Van den Herik, 1983). The research in board games obtained a huge impulse in 1944 when Von Neumann republished his article about the minimax algorithm (Von Neumann, 1928) together with Morgenstern in the book “Theory of Games and Economic Behavior” (Von Neumann and Morgenstern, 1944). These ideas were picked up by Shannon (1950) and Turing (1953) who tried to let a computer play Chess as intelligently as possible. Since then much research is performed on new methods, on a variety of games (Murray, 1952) and on other problems to make the computer a worthy opponent for the human player (Schaeffer and Van den Herik, 2002). One field in this area of research are the board games which have full information and are played by two persons. Chess is the classical example of this kind of a game and a great deal of effort has been devoted in the past to the construction of a good chess player. The most pregnant success so far in this area was the result when Deep Blue achieved to win against world chess champion Garry Kasparov (Newborn, 1996).

   Related Questions in Basic Statistics

  • Q : How to solve statistics assignment in

    How to solve staistics assignment, i need some help in solving stats assignment on AVOVA based problems. Could you help in solving this?

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : Cumulative Frequency and Relative

    Explain differences between Cumulative Frequency and Relative Frequency?

  • Q : Use the NW corner rule to find an

      (a) Use the NW corner rule to find an initial BFS, then solve using the transportation simplex method. Indicate your optimal objective function value. (b) Suppose we increase s1 from 15 to 16, and d3 from 10 to 11. S

  • Q : Define Service Demand Law

    Service Demand Law:• Dk = SKVK, Average time spent by a typical request obtaining service from resource k• DK = (ρk/X

  • Q : Statistics basic question This week you

    This week you will analyze if women drink more sodas than men.  For the purposes of this Question, assume that in the past there has been no difference.  However, you have seen lots of women drinking sodas the past few months.  You will perform a hypothesis test to determine if women now drink more

  • Q : Program Evaluation and Review

    Program Evaluation and Review Technique (PERT) A) Developed by US Navy and a consulting firm in 1958 for the Polaris submarine project. B) Technique as for CPM method, but acti

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : Computing Average revenue using

    Can anyone help me in the illustrated problem? The airport branch of a car rental company maintains a fleet of 50 SUVs. The inter-arrival time between the requests for an SUV is 2.4 hrs, on an average, with a standard deviation of 2.4 hrs. There is no indication of a

  • Q : FIN512 Entrepreneurial Finance Chapter

      Chapter 6: Discussion Question: #4 p. 223  It is usually easier to forecast sales for a seasoned firm contrast to an early-stage venture because an early-stage venture has limited access to bank credit lines, sho