--%>

Computing Average revenue using Standard deviation

Can anyone help me in the illustrated problem? The airport branch of a car rental company maintains a fleet of 50 SUVs. The inter-arrival time between the requests for an SUV is 2.4 hrs, on an average, with a standard deviation of 2.4 hrs. There is no indication of a systematic arrival pattern over the course of a day. Suppose that, if all SUVs are rented, then customers are willing to wait until there is an SUV available. The SUV is rented, on an average, for 3 days, with a standard deviation of one day.

a. Determine the average number of SUVs parked in the company’s lot?

b. By using a marketing survey, the company has discovered that if it decreases its daily rental price of $80 by $25, the average demand would rise to 12 rental requests per day and the average rental duration will become 4 days. Supposing that the standard deviation values stay unchanged, should this company adopt this latest pricing policy? Give an analysis!

c. Determine the average time a customer has to wait to rent an SUV? Please employ the initial parameters instead of the information in (b).

d. How would the waiting time change when the company decides to limit all the SUV rentals to exactly 4 days? Suppose that if such a restriction is imposed, the average inter-arrival time will rise to 3 hours, with the standard deviation changing to 3 hrs.

E

Expert

Verified

a) We know that a = 2.4 hours, p = 24 x 3 = 72 hours, CVa = (2.4/2.4) = 1, CVp = (24/72) = 0.33, and m = 50 cars

Percentage of cars used = (1/a)/(m/p) = (1/2.4)/(50/72) = 60%

Therefore, cars in use = 50 x 0.6 = 30

So, cars in parking lot = 20

b) a = 2, p = 96 hours,

Therefore, Percentage of cars used = (1/a)/ (m/p) = (1/2)/ (50/96) = 96%

So, average number of cars used = 50 x 0.96 = 48

Average revenue initially = 80 x 30 = $2400
Average revenue now = 48 x 55 = $2640

Therefore, the company should take the proposed step.

c) a = 2.4 hours, p = 24 x 3 = 72 hours, CVa = (2.4/2.4) = 1, CVp = (24/72) = 0.33, and m = 50 cars,

Waiting time = (p/m)(u^[{2(m+1)}1/2 – 1]/1-u)[CVa2 + CVp2/2]

= (72/50) (0.6^ {(102)1/2 – 1}/0.4) (1 + (0.33)2/2)

= 1.44 x (0.6) ^9 x 0.55/0.4 = 0.02 hours = 1.2 minutes

d) a = 3 hours, p = 24 x 4 =96 hours, CVa = (3/3) = 1, CVp = (24/96) = 0.25, and m = 50 cars

Percentage of cars used
= (1/a)/(m/p) = (1/3)/(50/96) = 64%

Waiting time = (p/m) (u^ [{2(m+1)}1/2 – 1]/1-u) [CVa2 + CVp2/2]

= (96/50) (0.64^ {(102)1/2 – 1}/0.36) (1 + (0.25)2/2)

= 1.92 x (0.64) ^9 x 0.53/0.36 = 0.05 hours = 3 minutes

   Related Questions in Basic Statistics

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : Define SPIN simulation modes SPIN: •

    SPIN: • SPIN generates C program that is the model checker – The pan verifier • Process Analyzer – Run the pan executable to do the model check

  • Q : Correlation analysis and the regression

    1).  When you take out a mortgage, there are many different kinds of costs.  Usually the two largest are the interest rate (annual percentage that determines the size of your monthly payment) and the loan fee (a one-time percentage charged to you at the time

  • Q : Principles of data analysis For the

    For the data analysis project, you will address some questions that interest you with the statistical methodology we are learning in class. You choose the questions; you decide how to collect data; you do the analyses. The questions can address almost any topic,

  • Q : Hw An experiment is conducted in which

    An experiment is conducted in which 60 participants each fill out a personality test, but not according to the way they see themselves. Instead, 20 are randomly assigned to fill it out according to the way they think a parent sees them (i.e. how a parent would fill it out to describe the participant

  • Q : Problem on Model Checking Part (a).

    Part (a). Draw a state diagram for a car with the following state variables: D indicating whether the car is in drive; B indicating the brake pedal is depressed; G indicating the gas pedal is depressed; and M indicating whether the car is moving. (For example, the sta

  • Q : Simplified demonstration of Littles Law

    Simplified demonstration of Little’s Law:

    Q : Computers playing games How Computers

    How Computers playing games can be categorized according to different dimensions?

  • Q : Compute two sample standard deviations

    Consider the following data for two independent random samples taken from two normal populations. Sample 1 14 26 20 16 14 18 Sample 2 18 16 8 12 16 14 a) Com

  • Q : Safety and Liveness in Model Checking

    Safety and Liveness in Model Checking Approach; •? Safety: Nothing bad happens •? Liveness: Something good happens •? Model checking is especially good at verifying safety and liveness properties    –?Concurrency i