--%>

Get Solved LP Problems

Solve Linear Programming Questions

A producer manufactures 3 models (I, II and III) of a particular product. He uses 2 raw materials A and B of which 4000 and 6000 units respectively are obtainable. The raw materials per unit of 3 models are listed below.

Raw materials

I

II

III

A

2

3

5

B

4

2

7

The labour time for each unit of model I is two times that of model II and thrice that of model III. The whole labour force of factory can manufacture an equivalent of 2500 units of model I. A model survey specifies that the minimum demand of 3 models is 500, 500 and 375 units correspondingly. However the ratio of number of units manufactured must be equal to 3:2:5. Suppose that gains per unit of model are 60, 40 and 100 correspondingly. Develop a LPP.

 

Answer

Assume

x1 - number of units of model I

     x2 - number of units of model II

     x3 - number of units of model III

 

 

 Raw materials

I

II

III

Availability

A

2

3

5

4000

B

4

2

7

6000

Profit

60

40

100

 

 

x1 + 1/2x2 + 1/3x3 ≤ 2500                                                       Labour time

 

x1 ≥ 500, x2 ≥ 500, x3 ≥ 375                                                    Minimum demand

 

The given ratio is x1: x2: x3 = 3: 2: 5

x1 / 3 = x2 / 2 = x3 / 5 = k

x1 = 3k; x2 = 2k; x3 = 5k

x2 = 2k → k = x2 / 2

So x1 = 3 x2 / 2 → 2x1 = 3x2

Likewise 2x3 = 5x2

 

Maximize Z= 60x1 + 40x2 + 100x3

Subject to 2x1 + 3x2 + 5x3 ≤ 4000

                  4x1 + 2x2 + 7x3 ≤ 6000

x1 + 1/2x2 + 1/3x3 ≤ 2500

2 x1 = 3x2

2 x3 = 5x2

& x1 ≥ 500, x2 ≥ 500, x3 ≥ 375

 

   Related Questions in Basic Statistics

  • Q : Homework help on Human memory & SPSS

    Effect of Scopolamine on Human Memory: A Completely Randomized Three Treamtent Design (N = 28) Scopolamine is a sedative used to induce sle

  • Q : Define Service Demand Law

    Service Demand Law:• Dk = SKVK, Average time spent by a typical request obtaining service from resource k• DK = (ρk/X

  • Q : Derived quantities in Queuing system

    Derived quantities in Queuing system: • λ = A / T, Arrival rate • X = C / T, Throughput or completion rate • ρ =U= B / T, Utilization &bu

  • Q : Regression Analysis 1. A planning

    1. A planning official in the Texas Department of Community Affairs, which works in the office next to you, has a problem. He has been handed a data set from his boss that includes the costs involved in developing local land use plans for communities wi

  • Q : Statistics for Management Assignment

    Q : Use the NW corner rule to find an

      (a) Use the NW corner rule to find an initial BFS, then solve using the transportation simplex method. Indicate your optimal objective function value. (b) Suppose we increase s1 from 15 to 16, and d3 from 10 to 11. S

  • Q : Sample z test and Sample t test A

    A random sample X1, X2, …, Xn is from a normal population with mean µ and variance σ2. If σ is unknown, give a 95% confidence interval of the population mean, and interpret it. Discuss the major diff

  • Q : Statistics basic question This week you

    This week you will analyze if women drink more sodas than men.  For the purposes of this Question, assume that in the past there has been no difference.  However, you have seen lots of women drinking sodas the past few months.  You will perform a hypothesis test to determine if women now drink more

  • Q : Networks of queues Networks of queues •

    Networks of queues • Typically, the flow of customers/request through a system may involve a number of different processing nodes.– IP packets through a computer network– Orders through a manufactur

  • Q : What is Interactive Response Time Law

    Interactive Response Time Law: • R = (L/X) - Z• Applies to closed systems.• Z is the think time. The time elapsed since&nb