--%>

Get Solved LP Problems

Solve Linear Programming Questions

A producer manufactures 3 models (I, II and III) of a particular product. He uses 2 raw materials A and B of which 4000 and 6000 units respectively are obtainable. The raw materials per unit of 3 models are listed below.

Raw materials

I

II

III

A

2

3

5

B

4

2

7

The labour time for each unit of model I is two times that of model II and thrice that of model III. The whole labour force of factory can manufacture an equivalent of 2500 units of model I. A model survey specifies that the minimum demand of 3 models is 500, 500 and 375 units correspondingly. However the ratio of number of units manufactured must be equal to 3:2:5. Suppose that gains per unit of model are 60, 40 and 100 correspondingly. Develop a LPP.

 

Answer

Assume

x1 - number of units of model I

     x2 - number of units of model II

     x3 - number of units of model III

 

 

 Raw materials

I

II

III

Availability

A

2

3

5

4000

B

4

2

7

6000

Profit

60

40

100

 

 

x1 + 1/2x2 + 1/3x3 ≤ 2500                                                       Labour time

 

x1 ≥ 500, x2 ≥ 500, x3 ≥ 375                                                    Minimum demand

 

The given ratio is x1: x2: x3 = 3: 2: 5

x1 / 3 = x2 / 2 = x3 / 5 = k

x1 = 3k; x2 = 2k; x3 = 5k

x2 = 2k → k = x2 / 2

So x1 = 3 x2 / 2 → 2x1 = 3x2

Likewise 2x3 = 5x2

 

Maximize Z= 60x1 + 40x2 + 100x3

Subject to 2x1 + 3x2 + 5x3 ≤ 4000

                  4x1 + 2x2 + 7x3 ≤ 6000

x1 + 1/2x2 + 1/3x3 ≤ 2500

2 x1 = 3x2

2 x3 = 5x2

& x1 ≥ 500, x2 ≥ 500, x3 ≥ 375

 

   Related Questions in Basic Statistics

  • Q : STATISTICS Question This week you will

    This week you will analyze if women drink more sodas than men.  For the purposes of this Question, assume that in the past there has been no difference.  However, you have seen lots of women drinking sodas the past few months.  You will perform a hypothesis test to determine if women now drink more

  • Q : Problem on Model Checking Part (a).

    Part (a). Draw a state diagram for a car with the following state variables: D indicating whether the car is in drive; B indicating the brake pedal is depressed; G indicating the gas pedal is depressed; and M indicating whether the car is moving. (For example, the sta

  • Q : Compute the stoke statistics Please do

    Please do the following and submit your results in the table format in a word file on canvas: a)      Go to Yahoo finance/Investing/Stocks/Research tools/Historical quotes/Historical prices and download adjusted monthly closing prices for the period 1/1/2006 to 31

  • Q : Data Description 1. If the mean number

    1. If the mean number of hours of television watched by teenagers per week is 12 with a standard deviation of 2 hours, what proportion of teenagers watch 16 to 18 hours of TV a week? (Assume a normal distribution.) A. 2.1% B. 4.5% C. 0.3% D. 4.2% 2. The probability of an offender having a s

  • Q : Cumulative Frequency and Relative

    Explain differences between Cumulative Frequency and Relative Frequency?

  • Q : Problems on ANOVA We are going to

    We are going to simulate an experiment where we are trying to see whether any of the four automated systems (labeled A, B, C, and D) that we use to produce our root beer result in a different specific gravity than any of the other systems. For this example, we would l

  • Q : Define Operational Analysis

    Operational Analysis: • Analysis method based on the measurement of the operational characteristics of the system.

    Q : Building Models Building Models • What

    Building Models • What do we need to know to build a model?– For model checking we need to specify behavior • Consider a simple vending machine – A custome rinserts coins, selects a beverage and receives a can of soda &bul

  • Q : MANOVA and Reflection Activity

    Activity 10:   MANOVA and Reflection   4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOV

  • Q : Average think time Software monitor

    Software monitor data for an interactive system shows a CPU utilization of 75%, a 3 second CPU service demand, a response time of 15 seconds, and 10 active users. Determine the average think time of these users?