--%>

Get Solved LP Problems

Solve Linear Programming Questions

A producer manufactures 3 models (I, II and III) of a particular product. He uses 2 raw materials A and B of which 4000 and 6000 units respectively are obtainable. The raw materials per unit of 3 models are listed below.

Raw materials

I

II

III

A

2

3

5

B

4

2

7

The labour time for each unit of model I is two times that of model II and thrice that of model III. The whole labour force of factory can manufacture an equivalent of 2500 units of model I. A model survey specifies that the minimum demand of 3 models is 500, 500 and 375 units correspondingly. However the ratio of number of units manufactured must be equal to 3:2:5. Suppose that gains per unit of model are 60, 40 and 100 correspondingly. Develop a LPP.

 

Answer

Assume

x1 - number of units of model I

     x2 - number of units of model II

     x3 - number of units of model III

 

 

 Raw materials

I

II

III

Availability

A

2

3

5

4000

B

4

2

7

6000

Profit

60

40

100

 

 

x1 + 1/2x2 + 1/3x3 ≤ 2500                                                       Labour time

 

x1 ≥ 500, x2 ≥ 500, x3 ≥ 375                                                    Minimum demand

 

The given ratio is x1: x2: x3 = 3: 2: 5

x1 / 3 = x2 / 2 = x3 / 5 = k

x1 = 3k; x2 = 2k; x3 = 5k

x2 = 2k → k = x2 / 2

So x1 = 3 x2 / 2 → 2x1 = 3x2

Likewise 2x3 = 5x2

 

Maximize Z= 60x1 + 40x2 + 100x3

Subject to 2x1 + 3x2 + 5x3 ≤ 4000

                  4x1 + 2x2 + 7x3 ≤ 6000

x1 + 1/2x2 + 1/3x3 ≤ 2500

2 x1 = 3x2

2 x3 = 5x2

& x1 ≥ 500, x2 ≥ 500, x3 ≥ 375

 

   Related Questions in Basic Statistics

  • Q : Cumulative Frequency and Relative

    Explain differences between Cumulative Frequency and Relative Frequency?

  • Q : Data Description 1. If the mean number

    1. If the mean number of hours of television watched by teenagers per week is 12 with a standard deviation of 2 hours, what proportion of teenagers watch 16 to 18 hours of TV a week? (Assume a normal distribution.) A. 2.1% B. 4.5% C. 0.3% D. 4.2% 2. The probability of an offender having a s

  • Q : STATISTICS Question This week you will

    This week you will analyze if women drink more sodas than men.  For the purposes of this Question, assume that in the past there has been no difference.  However, you have seen lots of women drinking sodas the past few months.  You will perform a hypothesis test to determine if women now drink more

  • Q : Assumptions in Queuing system

    Assumptions in Queuing system: • Flow balance implies that the number of arrivals in an observation period is equal to the

  • Q : Problem on queuing diagram Draw a 

    Draw a queuing diagram for the systems below and describe them using Kendall’s notation: A) Single CPU system <

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : Statistics basic question This week you

    This week you will analyze if women drink more sodas than men.  For the purposes of this Question, assume that in the past there has been no difference.  However, you have seen lots of women drinking sodas the past few months.  You will perform a hypothesis test to determine if women now drink more

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : Quantities in a queuing system

    Quantities in a queuing system: A: Count of

  • Q : Average think time Software monitor

    Software monitor data for an interactive system shows a CPU utilization of 75%, a 3 second CPU service demand, a response time of 15 seconds, and 10 active users. Determine the average think time of these users?