--%>

Avogadro's hypothesis Law Principle

Avogadro's hypothesis Law Principle- Berzelius, a chemist tried to correlate Dalton's atomic theory & Gay-Lussac's Law of gaseous volumes. According to his Berzelius hypothesis Equal volumes of all gases under similar conditions of temperature & pressure contain equal number of atoms e.g.

Hydrogen (1 vol) + Chlorine (1 vol)->HCl (2 vol)

Acc to Berzelius hypothesis:

Hydrogen (1/2 atom) + Chlorine (1/2 atom)->HCl (1 compound atom)

But this is indirect conflict of Dalton's atomic theory, so it was rejected.

So a new hypothesis was given by Avogardo.

According to him, An atom is a smallest particle of an element which can take part in a chemical reaction which may or may not be capable of independent existence.

molecule is the smallest particle of an element or of a compound which have an independent existence. So the smallest particle of a gas is a molecule not an atom, so the volume of gas must be related to the number of molecules rather than atoms.

According to Avogrado's Hypothesis-Equal volume of all gases under similar conditions of temperature & pressure contain equal number of molecules. This is able to explain all the gaseous reactions & now known as Avogrado's Law or Avogrado's principle.

For example-

Hydrogen (1 vol) + Chlorine (1 vol)->HCl (2 vol)

By Avogrado's hypothesis:

n molecule+n molecule gives 2n molecule

1/2molecule of both [Hydrogen + Chlorine] ->HCl (1 molecule)

 Applications of this hypothesis-

(1)In the calculation of atomicity of elementary gases-Atomicity is defined as the number of atoms of the element present in one molecule of the substance e.g. atomicity of N2 is two & O3 is three.

(2)To find the relationship between molecular mass & vapour density of gas-(relative density)

Vapour density of gas=Density of gas/density of hydrogen

           =Mass of [certain vol of gas/same volume of H2] at STP

            =Mass of [n molecule of gas/ n molecule of H2] at STP

            =Mass of [1 molecule of gas/ 1 molecule of H2] at STP

 

                          Vapour density=Molecular Mass/2

(3)To find the relationship between mass & volume of gas-As the

Molecular Mass=Vapour density x 2

Or Molecular Mass=Mass of 22.4 L of gas at STP

Thus 22.4 L of any gas at STP weight is equal to the molecular mass of the gas expressed in grams which is called Gram-Molecular Volume Law (G.M.V.).

   Related Questions in Chemistry

  • Q : Define Virial Equation The constant of

    The constant of vander Waal's equation can be related to the coefficients of the virial equation.  Vander Waal's equation provides a good overall description of the real gas PVT behaviour. Now let us

  • Q : What is adsorption and its examples. In

    In a liquid a solid substance a molecule present within the bulk of the substance is being attracted infirmly from all sides by the neighbouring molecules. Hence there is no bet force acting on the molecule or there are no unbalanced forces of the molecule. On the oth

  • Q : Problem on convection coefficient An

    An experiment to determine the convection coefficient associated with airflow over the surface of a thick stainless steel casting involves insertion of thermocouples in the casting at distances of 10 mm and 20 mm from the surface.  When the experiment was perform

  • Q : Dipole moment direction for the methanol

    Briefly describe the dipole moment direction for the methanol?

  • Q : Crystals of covalent compounds Crystals

    Crystals of the covalent compounds always contain:(i) Atoms as their structural units  (ii) Molecules as structural units  (iii) Ions held altogether by electrostatic forces (iv) High melting pointsAnswer: (i)

  • Q : Problem on preparing of a solution Give

    Give me answer of this question. How many grams of CH3OH should be added to water to prepare 150 solution of@M CH3 OH: (a) 9.6 (b) 2.4 (c) 9.6x 103 (d) 2.4 x103

  • Q : Describe First Order Rate Equation The

    The integrated forms of the first order rate equations are conveniently used to compare concentration time results with this rate equation. Rate equations show the dependence of the rate of the reaction on concentration can be integrated to give expressions fo

  • Q : Molarity of solution Help me to go

    Help me to go through this problem. When 7.1gm Na2SO4 (molecular mass 142) dissolves in 100ml H2O , the molarity of the solution is: (a) 2.0 M (b) 1.0 M (c) 0.5 M (d) 0.05 M

  • Q : Problem on Adiabatic expansion

    Calculate the change in entropy for the system for each of the following cases. Explain the sign that you obtain by a physical argument a) A gas undergoes a reversible, adiabatic expansion from an initial state at 500 K, 1 MPa, and

  • Q : Basicity order order of decreasing

    order of decreasing basicity of urea and its substituents