--%>

What are methods of phenol preparation and its uses?

Phenol was initially obtained by fractional distillation of coal-tar. Phenol is present in the middle oil fraction in the distillation of coal-tar. Now-a-days, it is manufactured from cumene (isopropyl benzene).
    
From cumene

The starting material for the preparation of phenol is cumene (isopropyl benzene). Cumene itself is prepared by Friedel-Craft alkylation of benzene with propene. Cumene is oxidized through air to cumene hydroperoxide, which after treatment with dilute sulphuric acid provides phenol and acetone.

2379_Phenol preparation.png 
    
From benzene (Raschig process)

The method involves heating of benzene, HCl and air over a catalyst (mixture of CuCl2 and FeCl2) at 500 K when chlorobenzene is produced. It is then heated with super heated steam at 750 K to give phenol.

719_Phenol preparation1.png 

Another new method for synthesis of phenol is to pass benzene and air over V2O5 at 600 K when benzene is directly oxidized to phenol.

1637_Phenol preparation2.png 

Uses of phenol
    
In the manufacture of drugs like salicylic acid, pheacetin, aspirin, salol etc.
    
For the manufacture of Bakelite by polymerizing with formaldehyde.
    
For the manufacture of phenolphthalein, picric acid.
    
As a additive for ink.
    
For the manufacture of cyclohexanol used as solvent for rubber.
    
As a strong antiseptic in soaps, lotions etc.
    
Phenol is used in the manufacture of herbicides such as '2, 4-D' and germicides such as "TCP".

   Related Questions in Chemistry

  • Q : Dipole attractions-London dispersion

    Describe how dipole attractions, London dispersion forces and the hydrogen bonding identical?

  • Q : Question based on vapour pressure and

    Benzene and toluene form nearly ideal solutions. At 20°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The parial vapour pressure of benzene at 20°C for a solution containing 78g of benzene and 46g of toluene in torr is: (a) 50 (b)

  • Q : Soluation of Ideal Gas Law problems

    Explain the method, how do you solve Ideal Gas Law problems?

  • Q : Problem based on molality of glucose

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Units of Measurement Unit of

    Unit of measurement- These are also some systems for units:      (1) C.G.S.

  • Q : Molal elevation constant of water The

    The boiling point of 0.1 molal aqueous solution of urea is 100.18oC  at 1 atm. The molal elevation constant of water is: (a) 1.8    (b) 0.18   (c) 18    (d) 18.6Answer: (a) Kb

  • Q : Linde liquefaction process Liquefied

    Liquefied natural gas (LNG) is produced using a Linde liquefaction process from pure methane gas at 3 bar and 280 K (conditions at point 1 in figure below). A three-stage compressor with interceding is used to compress the methane to 100 bar (point 2). The first stage

  • Q : What is covalent radii? Explain its

    Average covalent radii can be assigned on the basis of molecular structures. The accumulation of structural data by spectroscopic studies and both electron and x-ray diffraction studies allows one to investigate the possibili

  • Q : Finding Active mass of urea Can someone

    Can someone please help me in getting through this problem. 10 litre solution of urea comprises of 240 gm urea. The active mass of urea is: (i) 0.04 (ii) 0.02 (iii) 0.4 (iv) 0.2

  • Q : Molality of a glucose solution What

    What will be the molality of a solution containing 18g of glucose (having mol. wt. = 180) dissolved in 500g of water: (i) 1m  (ii) 0.5m  (iii) 0.2m  (iv) 2m