--%>

Theory of three dimensional motion

Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition function is:

 
qtrans = Σ exp [- (n2x + n2y + n2z) h2/ (8ma2)/kT]  

= Σ exp [- n2x h2/ (8ma2)/kT] Σ exp [- n2y h2/ (8ma2)/kT] × Σexp [- n2z h2/ (8ma2)/kT]

= Σ exp [-n2x h2/(8ma2)/kT] Σ exp [-n2y h2/(8ma2)/kT] × Σexp [-n2z h2/(8ma2)/kT]

= qx qy qz

Each of the three partition function terms is like the one-dimensional term. We therefore can use:

qx = qy = qz = √∏/2 [kT/h2/(8ma2)] ½ 

to obtain, with V = a3,

qtrans = qx qy qz = (2∏mkT/h2)3/2 V

The Three dimensional translation energy: the three dimensional translation energy is derivative with respect to temperature can be used to reach an expression for the normal energy of three dimensional translational motions. Although qtrans depends on the particles and the volume of the container, the thermal energy (U - U0)trans has, for 1 mol of any gas in any volume the value 3/2 RT.

Distribution over quantum states: the distribution expressions for three dimensional motions can be derived by following the same procedure as we do for one dimensional motion before. First, however, we see that we can use one "effective" quantum number n in place of the three dimensional quantum numbers are nx, ny, and nz.

It is enough for us to deal with a quantity that shows the sum of the square of the equation of quantum numbers rather than with the individual values. We introduce the variable n defined by n2 = n2x + n2y + n2z.

Then the allowed energies are given instead of the more detailed manner than the previous one which we have done above. In using the effective quantum number n, we must recognize that there are number of states all with the same value of the energy. The display of states as point shows that, for large n, the additional number of states included when n increases by 1 is equal to 1/2πn2. Thus, if we use n as an effective quantum number, we must use gn = 1/2πn2.

Distribution over Quantum states: the distribution expressions for dimensional motion can be derived by following the same procedure as we did for one dimensional motion. First, however, we see that we can use one 'effective" quantum number n in place of the three quantum numbers nx, ny and nz.

(n2x + n2y + n2z) (h2/8ma2)

It is enough for us to deal with a quantity that shows the sum of the squares of the quantum numbers rather than with the individual values. We introduces the variable n defined by n2 = n2x + n2y + n2z. then the allowed energies are given by n2h2/(8ma2) instead of the more detailed, but no more useful, expression involving nx, ny and nz.

In using the effective quantum number n, we must recognize that there are a number of states all with the same value of n, or of energy εn. The number of states at this energy is the degeneracy gn. The display of states as points shows that, for large n, the additional number of states included when n increases by 1 is equal to ½ ∏n2. Thus if we use n as an effective quantum number we must use gn, ½ ∏n2 as the degeneracy.

   Related Questions in Chemistry

  • Q : Mole 2.0gram of dolomite is heated to a

    2.0gram of dolomite is heated to a constant weight of 1.0g. Calculate the total volume of CO2 produced at STP by this reation

  • Q : Various cons of eating the organic foods

    Describe the various cons of eating the organic foods? Briefly illustrate it.

  • Q : Dipole moment Elaborate a dipole moment

    Elaborate a dipole moment?

  • Q : Problem on molecular weight of solid

    The vapor pressure of pure benzene at a certain temperature is 200 mm Hg. At the same temperature the vapor pressure of a solution containing 2g of non-volatile non-electrolyte solid in 78g of benzene is 195 mm Hg. What is the molecular weight of solid:

  • Q : Describe physical adsorption and its

    When the forces of attraction existing between adsorbate and adsorbent are van der Waal's forces, the adsorption is called physical adsorption. This type of adsorption is also known as physisorption or van der Waal's adsorption. Since the forces existing between adsorbent and adsorbate are very w

  • Q : Cons of eating organic foods Illustrate

    Illustrate the cons of eating organic foods?

  • Q : Molarity what is the molarity of the

    what is the molarity of the solution prepared by dissolving 75.5 g of pure KOH in 540 ml of solution

  • Q : Diffusion Molecular View When the

    When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.To see how the experimental coefficients can be treat

  • Q : Adiabatic compression A lean natural

    A lean natural gas is available at 18oC and 65 bars and must be compressed for economical pipeline transportation. The gas is first adiabatically compressed to 200 bars and then isobarically (i.e. at constant pressure) cooled to 25°C. The gas, which is

  • Q : How much phosphorus is in superphosphate

    Superphosphate has the formulate: CaH4 (PO4)2 H2O calculate the percentage of Phosphorus in this chemical. Show your calculations