--%>

Theory of three dimensional motion

Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition function is:

 
qtrans = Σ exp [- (n2x + n2y + n2z) h2/ (8ma2)/kT]  

= Σ exp [- n2x h2/ (8ma2)/kT] Σ exp [- n2y h2/ (8ma2)/kT] × Σexp [- n2z h2/ (8ma2)/kT]

= Σ exp [-n2x h2/(8ma2)/kT] Σ exp [-n2y h2/(8ma2)/kT] × Σexp [-n2z h2/(8ma2)/kT]

= qx qy qz

Each of the three partition function terms is like the one-dimensional term. We therefore can use:

qx = qy = qz = √∏/2 [kT/h2/(8ma2)] ½ 

to obtain, with V = a3,

qtrans = qx qy qz = (2∏mkT/h2)3/2 V

The Three dimensional translation energy: the three dimensional translation energy is derivative with respect to temperature can be used to reach an expression for the normal energy of three dimensional translational motions. Although qtrans depends on the particles and the volume of the container, the thermal energy (U - U0)trans has, for 1 mol of any gas in any volume the value 3/2 RT.

Distribution over quantum states: the distribution expressions for three dimensional motions can be derived by following the same procedure as we do for one dimensional motion before. First, however, we see that we can use one "effective" quantum number n in place of the three dimensional quantum numbers are nx, ny, and nz.

It is enough for us to deal with a quantity that shows the sum of the square of the equation of quantum numbers rather than with the individual values. We introduce the variable n defined by n2 = n2x + n2y + n2z.

Then the allowed energies are given instead of the more detailed manner than the previous one which we have done above. In using the effective quantum number n, we must recognize that there are number of states all with the same value of the energy. The display of states as point shows that, for large n, the additional number of states included when n increases by 1 is equal to 1/2πn2. Thus, if we use n as an effective quantum number, we must use gn = 1/2πn2.

Distribution over Quantum states: the distribution expressions for dimensional motion can be derived by following the same procedure as we did for one dimensional motion. First, however, we see that we can use one 'effective" quantum number n in place of the three quantum numbers nx, ny and nz.

(n2x + n2y + n2z) (h2/8ma2)

It is enough for us to deal with a quantity that shows the sum of the squares of the quantum numbers rather than with the individual values. We introduces the variable n defined by n2 = n2x + n2y + n2z. then the allowed energies are given by n2h2/(8ma2) instead of the more detailed, but no more useful, expression involving nx, ny and nz.

In using the effective quantum number n, we must recognize that there are a number of states all with the same value of n, or of energy εn. The number of states at this energy is the degeneracy gn. The display of states as points shows that, for large n, the additional number of states included when n increases by 1 is equal to ½ ∏n2. Thus if we use n as an effective quantum number we must use gn, ½ ∏n2 as the degeneracy.

   Related Questions in Chemistry

  • Q : Pressure and power for adiabatic

    a) Air flowing at 1 m3/s enters an adiabatic compressor at 20°C and 1 bar. It exits at 200°C. The isentropic efficiency of the compressor is 80%. Calculate the exit pressure and the power required. b) Steam enter

  • Q : Calculate PH value for a acetic acid 1.

    1. A solution of 0.100 M acetic acid is prepared. a) What is its pH value? b) If 20% of the initial acetic acid is converted to the acetate form by titration with NaOH, what is the resultant pH?

  • Q : Molarity of sodium hydroxide Can

    Can someone please help me in getting through this problem. Determine the molarity of a solution having 5g of sodium hydroxide in 250ml  solution is: (i) 0.5  (ii) 1.0  (iii) 2.0   (d) 0.1Answer: The right answer i

  • Q : How to calculate solutions ionic

    Transference numbers and molar conductors can be used to calculate ionic mobilities. This tables under is giving the transference numbers for positive ions at 25 degree C and the values obtained by extrapolation to infinite dilution:

    Q : What is electrolytic dissociation? The

    The Debye Huckel theory shows how the potential energy of an ion in solution depends on the ionic strength of the solution.Except at infinite dilution, electrostatic interaction between ions alters the properties of the solution from those excepted from th

  • Q : HCl is an acid or a base Illustrate is

    Illustrate is HCl an acid or a base ?

  • Q : Vapour pressure of benzene Give me

    Give me answer of this question. The vapour pressure of benzene at a certain temperature is 640mm of Hg. A non-volatile and non-electrolyte solid weighing 2.175g is added to 39.08g of benzene. The vapour pressure of the solution is 600,mm of Hg . What is the mo

  • Q : Mole 2.0gram of dolomite is heated to a

    2.0gram of dolomite is heated to a constant weight of 1.0g. Calculate the total volume of CO2 produced at STP by this reation

  • Q : Electrochemistry ( electrolysis of

    1. Define Faraday's first law of electrolysis 2. define Faraday's second law of electrolysis

  • Q : What is covalent radii? Explain its

    Average covalent radii can be assigned on the basis of molecular structures. The accumulation of structural data by spectroscopic studies and both electron and x-ray diffraction studies allows one to investigate the possibili