--%>

Problem on Model Checking

Part (a). Draw a state diagram for a car with the following state variables: D indicating whether the car is in drive; B indicating the brake pedal is depressed; G indicating the gas pedal is depressed; and M indicating whether the car is moving. (For example, the state DB¬G¬M says that the car is in drive, the brake pedal is down, the gas pedal is not down, and the car is not moving). Your state diagram should obey the following properties:

The start state is ¬D¬B¬G¬M.

  • To put the car in drive, the brake pedal must be down.
  • To push the gas pedal, the car must be in drive.
  • It is not possible to push both the gas and the brake at the same time.
  • Once the gas is down, the car will eventually move.
  • Once the car is moving, it is possible to stop the car by depressing the brake.

Part (b). For each of properties 1-4 listed in Part (a), write an LTL formula specifying the property, and make an informal argument why the property holds for your diagram.

Part (c). Is it possible to specify property 5 using an LTL formula? Justify your answer.

   Related Questions in Basic Statistics

  • Q : Building Models Building Models • What

    Building Models • What do we need to know to build a model?– For model checking we need to specify behavior • Consider a simple vending machine – A custome rinserts coins, selects a beverage and receives a can of soda &bul

  • Q : Report on Simple Random Sampling with

    One of my friend has a problem on simple random sampling. Can someone provide a complete Report on Simple Random Sampling with or without replacement?

  • Q : Get Solved LP Problems Solve Linear

    Solve Linear Programming Questions A producer manufactures 3 models (I, II and III) of a particular product. He uses 2 raw materials A and B of which 4000 and 6000 units respectively are obtainable. The raw materials per unit of 3

  • Q : Hypothesis homework A sample of 9 days

    A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evidence that the variance in the numbe

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : Statics for each of the following

    for each of the following studies a and b decide whether to reject the null hypothesis that groiups come from identical populations. Use the .01 level. (c) Figure the effects size for each study. (d) ADVANCED TOPIC: Carry out an analysis of variance for study (a) using the strucurtal method.

  • Q : Computers playing games How Computers

    How Computers playing games can be categorized according to different dimensions?

  • Q : Assumptions in Queuing system

    Assumptions in Queuing system: • Flow balance implies that the number of arrivals in an observation period is equal to the

  • Q : Define Utilization Law Utilization Law

    Utilization Law: • ρk = XK . SK = X . DK • Utilization of a resource is the fraction

  • Q : Average think time Software monitor

    Software monitor data for an interactive system shows a CPU utilization of 75%, a 3 second CPU service demand, a response time of 15 seconds, and 10 active users. Determine the average think time of these users?