--%>

Define Bond Energies - Bond Charges

Energy changes in some chemical reactions can be used to deduce the energies of chemical bonds.


Our understanding of the molecular basis of thermodynamic properties is extended when we ask why the enthalpy change for a reaction is what it is. We deduce, for example, from the data, the value of -802.34 kJ for ΔH°298 for the reaction:

2145_bond energy.png 
 
Why it is the enthalpy change has this value?

Two relatively small contributions to the ?H term can be recognized. One contribution comes from the difference in the normal products of the thermal energies of the molecules of the products and the reactants. Another small contribution due to the volume comes from the change in number of moles of reagents.

These minor complicating contributions can be avoided by using ?H00 = ?UC values such as those o f appendix table to calculate the ?U00 value of - 804.2 kJ for the methane combination reaction. Now we ask about the molecular basis of this energy difference.

To answer such question, we adopt a traditional chemical idea. We think of the energies of many substances in terms of the chemical bonds that we imagine to be holding the atoms together. The energy of one substance compared to that of another substance is said to be due primarily to the energy "strength" of the chemical bonds.

Standard enthalpies of atomic species: we need to justify the energy data for the free gaseous atoms to calculate the energy change when the molecules of a substance are broken up into free atoms.

Enthalpy and energy data can be taken for gaseous atomic substances. These data come, usually, from spectroscopic rather from calorimetric measurements. For diametric molecules, spectral studies show the energy for breakup of these molecules into atoms. Results from the original molecules and the atoms produced, all in their lowest energy, or ground states, can be deduced from the spectral data. Thus we arrive directly at data for ?H°f,0. these energy data for atomic species can be extended to give enthalpy values, as illustrated by some of the entries in bond energies.

Bond energies: with the data begin by considering reactions that are easily given a bond energy interpretation. For example, the ΔH° ƒ, 0 can be used to obtain:

199_bond energy1.png

   Related Questions in Chemistry

  • Q : Meaning of molality of a solution The

    The molality of a solution will be: (i) Number of moles of solute per 1000 ml of solvent (ii) Number of moles of solute per 1000 gm of solvent (iii) Number of moles of solute per 1000 ml of solution (iv) Number of gram equivalents of solute per 1000 m

  • Q : Benefits of soapy detergents over the

    What are the benefits of soapy detergents over the soap less detergents? Briefly state the benefits?

  • Q : Meaning of Molar solution Molar

    Molar solution signifies 1 mole of solute present/existed in: (i) 1000g of solvent (ii) 1 litre of solvent (iii) 1 litre of solution (iv) 1000g of solution

  • Q : Theory of one dimensional motion For

    For motion in one dimension, the distribution of the molecules over quantum states, speeds, and energies can be deduced.Here we show that the energy of a macroscopic gas sample can be described on the basis of our knowledge of the quantum states allowed to

  • Q : Problem on making solution Select the

    Select the right answer of the question. The weight of H2C2O42H2O required to prepare 500ml of 0.2N solution is : (a) 126g (b) 12.6g (c) 63g (d) 6.3g

  • Q : Mole fraction Give me answer of

    Give me answer of following question. The sum of the mole fraction of the components of a solution is : (a) 0 (b) 1 (c) 2 (d) 4.

  • Q : Molecular energies and speeds The

    The average translational kinetic energies and speeds of the molecules of a gas can be calculated.The result that the kinetic energy of 1 mol of the molecules of a gas is equal to 3/2 RT can be used to obtain numerical values for the

  • Q : How haloalkanes are prepared from

    This is the common method for preparing haloalkanes in laboratory. Alcohols can be converted to haloalkanes by substitution of - OH group with a halogen atom. Different reagents can be used to get haloa

  • Q : C-X bond length in halobenzene less

    C-X bond length in halobenzene less then C-X bond lengthin CH3-x

  • Q : Problem on physical and thermodynamic

    The shells of marine organisms contain calcium carbonate CaCO3, largely in a crystalline form known as calcite. There is a second crystalline form of calcium carbonate known as aragonite. Physical and thermodynamic properties of calcite and aragonite at 298