--%>

Define Bond Energies - Bond Charges

Energy changes in some chemical reactions can be used to deduce the energies of chemical bonds.


Our understanding of the molecular basis of thermodynamic properties is extended when we ask why the enthalpy change for a reaction is what it is. We deduce, for example, from the data, the value of -802.34 kJ for ΔH°298 for the reaction:

2145_bond energy.png 
 
Why it is the enthalpy change has this value?

Two relatively small contributions to the ?H term can be recognized. One contribution comes from the difference in the normal products of the thermal energies of the molecules of the products and the reactants. Another small contribution due to the volume comes from the change in number of moles of reagents.

These minor complicating contributions can be avoided by using ?H00 = ?UC values such as those o f appendix table to calculate the ?U00 value of - 804.2 kJ for the methane combination reaction. Now we ask about the molecular basis of this energy difference.

To answer such question, we adopt a traditional chemical idea. We think of the energies of many substances in terms of the chemical bonds that we imagine to be holding the atoms together. The energy of one substance compared to that of another substance is said to be due primarily to the energy "strength" of the chemical bonds.

Standard enthalpies of atomic species: we need to justify the energy data for the free gaseous atoms to calculate the energy change when the molecules of a substance are broken up into free atoms.

Enthalpy and energy data can be taken for gaseous atomic substances. These data come, usually, from spectroscopic rather from calorimetric measurements. For diametric molecules, spectral studies show the energy for breakup of these molecules into atoms. Results from the original molecules and the atoms produced, all in their lowest energy, or ground states, can be deduced from the spectral data. Thus we arrive directly at data for ?H°f,0. these energy data for atomic species can be extended to give enthalpy values, as illustrated by some of the entries in bond energies.

Bond energies: with the data begin by considering reactions that are easily given a bond energy interpretation. For example, the ΔH° ƒ, 0 can be used to obtain:

199_bond energy1.png

   Related Questions in Chemistry

  • Q : Product of HCl Zn Illustrate  the

    Illustrate  the product of HCl Zn?

  • Q : Molecular Structure type The ionic

    The ionic radii of Rb+ and I- respectively are 1.46 Å and 2.16Å. The very most probable type of structure exhibited by it is: (a) CsCl type  (b) ZnS type  (c) Nacl type  (d) CaF2 type

    Q : Show your calculations Superphosphate

    Superphosphate has the formulae: CaH4 (PO4)2H2).  Calculate the percentage of phosphorus in this chemical.  Show your calculations  (around ten lines);  also Work out how to make up a nutrient mixtur

  • Q : Molarity in Nacl The molarity of 0.006

    The molarity of 0.006 mole of NaCl in 100 solutions will be: (i) 0.6 (ii) 0.06 (iii) 0.006 (iv) 0.066 (v) None of theseChoose the right answer from above.Answer: The right answer is (ii) M = n/ v(

  • Q : Problem on Neutralization What weight

    What weight of hydrated oxalic acid should be added for complete neutralisation of 100 ml of 0.2N - NaOH solution? (a) 0.45 g  (b)0.90 g  (c) 1.08 g  (d) 1.26 g      Answer

  • Q : Acid Solutions Choose the right answer

    Choose the right answer from following. Volume of water needed to mix with 10 ml 10N NHO3 to get 0.1 N HNO3: (a) 1000 ml (b) 990 ml (c) 1010 ml (d) 10 ml

  • Q : Problem on vapor-liquid equilibrium Two

    Two tanks which contain water are connected to each other through a valve. The initial conditions are as shown (at equilibrium): 683_tank question.jpg

  • Q : Question on colligative property Choose

    Choose the right answer from following. Which of the following is a colligative property: (a) Osmotic pressure (b) Boiling point (c) Vapour pressure (d) Freezing point

  • Q : Mole fraction of water and ethanol Give

    Give me answer of this question. A solution contains 1 mole of water and 4 mole of ethanol. The mole fraction of water and ethanol will be: (a) 0.2 water + 0.8 ethanol (b) 0.4 water + 0.6 ethanol (c) 0.6 water + 0.8 ethanol (d) 0.8 water + 0.2 ethanol

  • Q : Question of vapour pressure Choose the

    Choose the right answer from following. Vapour pressure of a solution is: (a) Directly proportional to the mole fraction of the solvent (b) Inversely proportional to the mole fraction of the solute (c) Inversely proportional to the mole fraction of the solvent (d