--%>

Define Bond Energies - Bond Charges

Energy changes in some chemical reactions can be used to deduce the energies of chemical bonds.


Our understanding of the molecular basis of thermodynamic properties is extended when we ask why the enthalpy change for a reaction is what it is. We deduce, for example, from the data, the value of -802.34 kJ for ΔH°298 for the reaction:

2145_bond energy.png 
 
Why it is the enthalpy change has this value?

Two relatively small contributions to the ?H term can be recognized. One contribution comes from the difference in the normal products of the thermal energies of the molecules of the products and the reactants. Another small contribution due to the volume comes from the change in number of moles of reagents.

These minor complicating contributions can be avoided by using ?H00 = ?UC values such as those o f appendix table to calculate the ?U00 value of - 804.2 kJ for the methane combination reaction. Now we ask about the molecular basis of this energy difference.

To answer such question, we adopt a traditional chemical idea. We think of the energies of many substances in terms of the chemical bonds that we imagine to be holding the atoms together. The energy of one substance compared to that of another substance is said to be due primarily to the energy "strength" of the chemical bonds.

Standard enthalpies of atomic species: we need to justify the energy data for the free gaseous atoms to calculate the energy change when the molecules of a substance are broken up into free atoms.

Enthalpy and energy data can be taken for gaseous atomic substances. These data come, usually, from spectroscopic rather from calorimetric measurements. For diametric molecules, spectral studies show the energy for breakup of these molecules into atoms. Results from the original molecules and the atoms produced, all in their lowest energy, or ground states, can be deduced from the spectral data. Thus we arrive directly at data for ?H°f,0. these energy data for atomic species can be extended to give enthalpy values, as illustrated by some of the entries in bond energies.

Bond energies: with the data begin by considering reactions that are easily given a bond energy interpretation. For example, the ΔH° ƒ, 0 can be used to obtain:

199_bond energy1.png

   Related Questions in Chemistry

  • Q : Describe Transformation Matrices. Each

    Each symmetry operation can be represented by a transformation matrix.You have seen what happens when a molecule is subjected to the symmetry operation that corresponds to any of the symmetry elements of the point group to which the molecule belongs. The m

  • Q : Molar mass Select the right answer of

    Select the right answer of the question. Which is heaviest: (a)25 gm of mercury (b)2 moles of water (c)2 moles of carbon dioxide (d)4 gm atoms of oxygen

  • Q : Vander Waals forces Wax is an example

    Wax is an example of: (a) Ionic crystal  (b) Covalent crystal  (c) Metallic crystal  (d) Molecular crystalAnswer: (d) Iodine crystals are molecular crystals, in which constituent particles are molecules having inter particle

  • Q : Calculating Formulae Superphosphate has

    Superphosphate has the formula CaH4(PO4)2 H2O, what is the calculation to get the percentage of Phosphorus, I need to show the calculation. I know it is 30.9737622 u in weight and 2 atoms of the formula, but not sure how to work the calculation backwards.

  • Q : Moles of chloride ion Select the right

    Select the right answer of the question. A solution of CaCl2 is 0.5 mol litre , then the moles of chloride ion in 500ml will be : (a) 0.25 (b) 0.50 (c) 0.75 (d)1.00

  • Q : Problem on reversible and irreversible

    The second law states that  dS ≥ (dQ/T), where dS = dQ/T for a reversible process and dS > dQ/T for an irreversible process.   a. Show that since dW12 = -dW21 (dWreverse = -dWforward) for a r

  • Q : 6. 20 gm of hydrogen is present in 5

    6. 20 gm of hydrogen is present in 5 litre vessel. The molar concentration of hydrogen is

  • Q : What are the various types of drugs

    Drugs are broadly classified into following types depending on the purpose for which they are used. 1. Antipyretics

  • Q : Molarity A solution has volume 200ml

    A solution has volume 200ml and molarity 0.1.if it is diluted 5times then calculate the molarity of reasulying solution and the amount of water added to it.

  • Q : Cations Explain how dissolving the

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.