--%>

Explain the process of coagulation of colloidal solutions.

Presence of small concentrations of appropriate electrolyte is necessary to stabilize the colloidal solutions. However, if the electrolytes are present in higher concentration, then the ions of the electrolyte neutralize the charge on the colloidal particles may unite together to form bigger particles which are then precipitated. The precipitation of a colloid through induced aggregation by the addition of some suitable aggregation by the addition of some suitable electrolyte is called coagulation or flocculation.


The coagulation of a colloidal solution by an electrolyte does not tales place until the added electrolyte has certain minimum concentration in the solution. The minimum concentration of the electrolyte in millimoles that must be added to one litre of the sol so as to bring about complete coagulation value of the electrolyte for the sol.

Different electrolytes have dissimilar coagulation values. Smaller the coagulation value of the electrolyte larger is its coagulating or precipitating power. This can be expressed as under.
                                  
2021_Collidal solution.png 

The coagulation behaviour of various electrolytes was studied in details by Hardy and Schulze. They experience that:
    
The ions carrying charges opposite to that of sol particles are effective in causing the coagulation of the sol. such ions are called flocculating ions or active ions.
    
Coagulating power of an electrolyte is directly proportional to the fourth power of the valency of the active ions. This implies that greater the valency of the flocculating ion greater is the power to cause precipitation.

Thus, for the coagulation of sols carrying negative charge (like As2S3 sol), Al3+ ions are more effective then Ba2+ or Na+ ions. Similarly, for the coagulation of sols carrying positive charge, such as Fe(OH)3 sol PO43- ions are more effective than SO42- or Cl- ions. The two observations given above are collectively called Hardy Schulze rule.

Coagulation of colloidal solutions can also be attained by the subsequent techniques:
    
By mutual precipitations: when two oppositely charged sols such as Fe(OH)3 and As2S3 are mixed and equimolar properties, they neutralize each other and may get coagulated. Sometimes the sols may get coagulated due to the mutual destruction of stabilizing agents.
    
By electrophoresis: we know that during electrophoresis the sol particles move towards the oppositely charged electrodes. If the process is carried for a long time, the particles will touch the electrode, lose their charge and get coagulated.
    
By repeated dialysis: the stability of colloidal is due to the presence of a small amount of electrolyte. Of the electrolyte is completely removed by repeated dialysis, the sol will get coagulated.
    
By heating: the sol may be coagulated even by simple heating.

   Related Questions in Chemistry

  • Q : Whether HCl is a base or an acid

    Whether HCl is a base or an acid? Briefly state your comments?

  • Q : Base parachloroaniline is strong base

    parachloroaniline is strong base than paranitroaniline

  • Q : Calculate PH value for a acetic acid 1.

    1. A solution of 0.100 M acetic acid is prepared. a) What is its pH value? b) If 20% of the initial acetic acid is converted to the acetate form by titration with NaOH, what is the resultant pH?

  • Q : Dipole moment of chlorooctane

    Illustrate the dipole moment of chlorooctane?

  • Q : Mole fraction of Carbon dioxide Choose

    Choose the right answer from following. If we take 44g of CO2 and 14g of N2 what will be mole fraction of CO2 in the mixture: (a) 1/5 (b) 1/3 (c) 2/3 (d) 1/4

  • Q : Help 1) Chromium(III) hydroxide is

    1) Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer. 2) Explain how dissolving t

  • Q : Non-ideal Gases Fugacity The fugacity

    The fugacity is a pressure like quantity that is used to treat the free energy of nonideal gases.Now we begin the steps that allow us to relate free energy changes to the equilibrium constant of real, nonideal gases. The thermodynamic reaction 

  • Q : IUPAC name of the benzene Write a short

    Write a short note on the IUPAC name of the benzene?

  • Q : Neutralization of sodium hydroxide How

    How much of NaOH is needed to neutralise 1500 cm3 of 0.1N HCl (given = At. wt. of Na =23): (i) 4 g  (ii) 6 g (iii) 40 g  (iv) 60 g

  • Q : Concentration of Barium chloride Give

    Give me answer of this question. If 5.0gm of BaCl2 is present in 106 gm solution, the concentration is: (a)1 ppm (b)5 ppm (c)50 ppm (d)1000 ppm