--%>

Explain the process of coagulation of colloidal solutions.

Presence of small concentrations of appropriate electrolyte is necessary to stabilize the colloidal solutions. However, if the electrolytes are present in higher concentration, then the ions of the electrolyte neutralize the charge on the colloidal particles may unite together to form bigger particles which are then precipitated. The precipitation of a colloid through induced aggregation by the addition of some suitable aggregation by the addition of some suitable electrolyte is called coagulation or flocculation.


The coagulation of a colloidal solution by an electrolyte does not tales place until the added electrolyte has certain minimum concentration in the solution. The minimum concentration of the electrolyte in millimoles that must be added to one litre of the sol so as to bring about complete coagulation value of the electrolyte for the sol.

Different electrolytes have dissimilar coagulation values. Smaller the coagulation value of the electrolyte larger is its coagulating or precipitating power. This can be expressed as under.
                                  
2021_Collidal solution.png 

The coagulation behaviour of various electrolytes was studied in details by Hardy and Schulze. They experience that:
    
The ions carrying charges opposite to that of sol particles are effective in causing the coagulation of the sol. such ions are called flocculating ions or active ions.
    
Coagulating power of an electrolyte is directly proportional to the fourth power of the valency of the active ions. This implies that greater the valency of the flocculating ion greater is the power to cause precipitation.

Thus, for the coagulation of sols carrying negative charge (like As2S3 sol), Al3+ ions are more effective then Ba2+ or Na+ ions. Similarly, for the coagulation of sols carrying positive charge, such as Fe(OH)3 sol PO43- ions are more effective than SO42- or Cl- ions. The two observations given above are collectively called Hardy Schulze rule.

Coagulation of colloidal solutions can also be attained by the subsequent techniques:
    
By mutual precipitations: when two oppositely charged sols such as Fe(OH)3 and As2S3 are mixed and equimolar properties, they neutralize each other and may get coagulated. Sometimes the sols may get coagulated due to the mutual destruction of stabilizing agents.
    
By electrophoresis: we know that during electrophoresis the sol particles move towards the oppositely charged electrodes. If the process is carried for a long time, the particles will touch the electrode, lose their charge and get coagulated.
    
By repeated dialysis: the stability of colloidal is due to the presence of a small amount of electrolyte. Of the electrolyte is completely removed by repeated dialysis, the sol will get coagulated.
    
By heating: the sol may be coagulated even by simple heating.

   Related Questions in Chemistry

  • Q : Hydroxide is highly insoluble in

     : 1) Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to

  • Q : Relationship between free energy and

    The free energy of a gas depends on the pressure that confines the gas. The standard free energies of formation, like those allow predictions to be made of the possibility of a reaction at 25°C for each reagent at 

  • Q : Why medications include the hcl Why do

    Why do various medications include the hcl? Describe briefly?

  • Q : Problem on physical and thermodynamic

    The shells of marine organisms contain calcium carbonate CaCO3, largely in a crystalline form known as calcite. There is a second crystalline form of calcium carbonate known as aragonite. Physical and thermodynamic properties of calcite and aragonite at 298

  • Q : Amines arrange in order of

    arrange in order of basicity,pyridine,pipyridineand pyorine

  • Q : Mole fraction in vapours Choose the

    Choose the right answer from following. If two substances A and B have P0A P0B= 1:2 and have mole fraction in solution 1 : 2 then mole fraction of A in vapours: (a) 0.33 (b) 0.25 (c) 0.52 (d) 0.2

  • Q : Molarity Give me answer of this

    Give me answer of this question. If 20ml of 0.4N, NaoH solution completely neutralises 40ml of a dibasic acid. The molarity of the acid solution is:(a) 0.1M (b) 0.2M (c)0.3M (d)0.4M

  • Q : What are emulsions?Describe its

    Emulsions are colloidal solutions in which disperse phase as well as dispersion medium is both liquids. Emulsions can be broadly classified into two types: (i) Oil in water (O/W type) emulsions: in this type of emulsions, oil acts disperse phase and water acts

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

  • Q : Question relatede to calculate molarity

    Select the right answer of the question. What is molarity of a solution of HCl that contains 49% by weight of solute and whose specific gravity is 1.41 : (a) 15.25 (b) 16.75 (c) 18.92 (d) 20.08