--%>

Explain Tachyon paradox

Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero energy the tachyon is travelling with unlimited velocity, or is transcendent. Now a charged tachyon at a specified (non-infinite) speed will be travelling faster than light in its own medium, and must emit Cherenkov radiation. The loss of this energy will obviously decrease the energy of the tachyon that will make it go faster, resultant in a runaway reaction where some charged tachyon will rapidly race off to the transcendence.

Though the above argument outcomes in a curious end, the meat of the tachyon paradox is this: In relativity, the transcendence of the tachyon is frame-dependent. That is, even as a tachyon may emerge to be transcendent in one frame, it would emerge to others to still have non-zero energy. However in this situation we have a condition where in one frame it would encompass come to zero energy and would stop emitting the Cherenkov radiation; however in the other frame it would still contain energy left and must be emitting Cherenkov radiation on its way to the transcendence. As they can’t both be true, by the relativistic arguments, tachyons can’t be charged.

This argument obviously does not make any account of the quantum mechanical treatments of tachyons that complicate the circumstances a huge deal.

   Related Questions in Physics

  • Q : Non-Parametric Tests Activity

    Activity 9:   Non-Parametric Tests    4Non-Parametric Tests While you have learned a number of parametric statistical techniques, you are also aware that if the assumptions related to

  • Q : Define Hubbles law Hubble's law (E.P.

    Hubble's law (E.P. Hubble; 1925): The relationship discovered between radial velocity and distance. The further away a galaxy is away from is, the quicker it is receding away from us. The constant of proportionality is the Hubble cons

  • Q : Define Ehrenfest paradox Ehrenfest

    Ehrenfest paradox (Ehernfest, 1909): The special relativistic "paradox" including a fast rotating disc. As any radial segment of the disc is perpendicular to the direction of motion, there must be no length contraction of the radius;

  • Q : Explain Chronology protection conjecture

    Chronology protection conjecture (S.W. Hawking): The notion that the formation of any closed time like curve will (automatically) involuntarily be destroyed by the quantum fluctuations as soon as it is made. In another words, the quan

  • Q : Describe Wiedemann-Franz law

    Wiedemann-Franz law: It is the ratio of the thermal conductivity of any pure metal (substance) to its electrical conductivity is just about constant for any specified temperature. This law holds pretty well apart from at low temperatures.

  • Q : Biot-Savart law Biot-Savart law (J.B.

    Biot-Savart law (J.B. Biot, F. Savart) - The law which explains the contributions to the magnetic field by an electric current. This is analogous to the Coulomb's law. Mathematically: dB = (mu0 I)/(4 pi r2) dl cross e

  • Q : What is Eotvos law of capillarity

    Eotvos law of capillarity (Baron L. von Eotvos; c. 1870): The surface tension gamma of a liquid is associated to its temperature T, the liquid's critical temperature, T*, and its density rho by: gamma ~=

  • Q : What is Farad or SI unit of capacitance

    What is Farad or SI unit of capacitance? Farad: F (after M. Faraday, 1791-1867): The derived SI unit of the capacitance stated as the capacitance in a capacitor that, when charged to 1 C, contains

  • Q : What is Beauty criterion Beauty

    Beauty criterion (Dirac) - The idea that more aesthetically pleasing a theory is the superior it is. In nature this criterion does not stand up to the actual test -- whether or not forecasts of a given theory agree with observational tests -- however

  • Q : Define Watt or SI unit of power Watt: W

    Watt: W (after J. Watt, 1736-1819): The derived SI unit of power, stated as a power of 1 J acting over the period of 1 s; it therefore has the units of J/s.