--%>

Explain Tachyon paradox

Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero energy the tachyon is travelling with unlimited velocity, or is transcendent. Now a charged tachyon at a specified (non-infinite) speed will be travelling faster than light in its own medium, and must emit Cherenkov radiation. The loss of this energy will obviously decrease the energy of the tachyon that will make it go faster, resultant in a runaway reaction where some charged tachyon will rapidly race off to the transcendence.

Though the above argument outcomes in a curious end, the meat of the tachyon paradox is this: In relativity, the transcendence of the tachyon is frame-dependent. That is, even as a tachyon may emerge to be transcendent in one frame, it would emerge to others to still have non-zero energy. However in this situation we have a condition where in one frame it would encompass come to zero energy and would stop emitting the Cherenkov radiation; however in the other frame it would still contain energy left and must be emitting Cherenkov radiation on its way to the transcendence. As they can’t both be true, by the relativistic arguments, tachyons can’t be charged.

This argument obviously does not make any account of the quantum mechanical treatments of tachyons that complicate the circumstances a huge deal.

   Related Questions in Physics

  • Q : Explain Michelson-Morley experiment

    Michelson-Morley experiment (A.A. Michelson, E.W. Morley; 1887): Probably the most famous null-experiment of all time, designed to confirm the existence of the proposed "lumeniferous aether" via which light waves were considered to pr

  • Q : Calculate the intensity I along y axis

    As shown in the figure below, a source at S is sending out a spherical wave: E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source

  • Q : Define Laue pattern Laue pattern (M.

    Laue pattern (M. von Laue): The pattern generated on a photographic film whenever high-frequency electromagnetic waves (like x-rays) are fired at the crystalline solid.

  • Q : Weak equivalence or principle of

    Weak equivalence principle: principle of uniqueness of freefall: The idea in general relativity is that the world-line of a freefalling body is sovereign of its composition, structure, or state. This principle, hold by Newtonian mechanics and gravitat

  • Q : What is Hawking temperature Hawking

    Hawking temperature: The temperature of a black hole is caused by the emission of the hawking radiation. For a black hole with mass m, it is illustrated as: T = (hbar c3)/(8 pi G k m).

  • Q : What is Gray Gray : Gy (after L.H.

    Gray: Gy (after L.H. Gray, 1905-1965): The derived SI unit of engrossed dose, stated as the absorbed dose in which the energy per unit mass communicated to the matter by the ionizing radiation is 1 J/kg; it therefore has units of J/kg

  • Q : What is Super fluidity Super fluidity :

    Super fluidity: The phenomenon by which, at adequately low temperatures, a fluid can flow with zero (0) viscosity. These causes are related with the superconductivity.

  • Q : Problem on multi level TDM Ten sources,

    Ten sources, six with a bit rate of 200 Kbps and four with a bit rate of 400Kbps are to be combined using multi level TDM  with no sync bits. Answer the questions below about the final phase of multiplexing: a

  • Q : Define Stefan-Boltzmann constant

    Stefan-Boltzmann constant: sigma (Stefan, L. Boltzmann): The constant of proportionality exist in the Stefan-Boltzmann law. It is equivalent to 5.6697 x 10-8 W/m2/K4.

  • Q : Define Ohm or SI unit of electric

    Ohm: Omega: O (after G. Ohm, 1787-1854) The derived SI unit of electric resistance, stated as the resistance among two points on a conductor whenever a constant potential difference of 1 V generates a current of 1 A in the conductor;