--%>

Explain Tachyon paradox

Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero energy the tachyon is travelling with unlimited velocity, or is transcendent. Now a charged tachyon at a specified (non-infinite) speed will be travelling faster than light in its own medium, and must emit Cherenkov radiation. The loss of this energy will obviously decrease the energy of the tachyon that will make it go faster, resultant in a runaway reaction where some charged tachyon will rapidly race off to the transcendence.

Though the above argument outcomes in a curious end, the meat of the tachyon paradox is this: In relativity, the transcendence of the tachyon is frame-dependent. That is, even as a tachyon may emerge to be transcendent in one frame, it would emerge to others to still have non-zero energy. However in this situation we have a condition where in one frame it would encompass come to zero energy and would stop emitting the Cherenkov radiation; however in the other frame it would still contain energy left and must be emitting Cherenkov radiation on its way to the transcendence. As they can’t both be true, by the relativistic arguments, tachyons can’t be charged.

This argument obviously does not make any account of the quantum mechanical treatments of tachyons that complicate the circumstances a huge deal.

   Related Questions in Physics

  • Q : Explain Coanda effect Coanda effect:

    Coanda effect: The effect which points out that a fluid tends to flow all along a surface, instead of flowing via free space.

  • Q : Explain Event horizon Event horizon:

    Event horizon: The radius which a spherical mass should be compressed to in order to convert it into a black hole, or the radius at which the time and space switch responsibilities. Once within the event horizon, it is basically impossible to escape t

  • Q : Steps to the scientific notation

    Illustrate the steps to the scientific notation? Briefly illustrate the steps.

  • Q : Define Weiss constant Weiss constant :

    Weiss constant: The characteristic constant dependent on the substance, employed in computing the susceptibility of the paramagnetic materials.

  • Q : Define Zeeman Effect or Zeeman line

    Zeeman Effect: Zeeman line splitting (P. Zeeman; 1896): Zeeman Effect is the splitting of lines in a spectrum whenever the source is exposed to the magnetic field.

  • Q : Engineering in brief Define the term

    Define the term engineering in brief.

  • Q : Becquerel Becquerel : Bq (after A.H.

    Becquerel: Bq (after A.H. Becquerel, 1852-1908) - The derived SI unit of the activity stated as the activity of radionuclide decay at a rate, on the average, of one nuclear transition every 1 s; it hence has units of s-1.

  • Q : Brewster's law Brewster's law (D.

    Brewster's law (D. Brewster) - The extent or level of the polarization of light reflected from a transparent surface is maximum whenever the reflected ray is at right angle to the refracted ray.  

  • Q : Explain Lamberts laws or Lamberts

    What is Lamberts laws or Lamberts first law, second law and third law: Lambert's laws (J.H. Lambert) Lambert's first l

  • Q : What is balmer series Balmer series (J.

    Balmer series (J. Balmer; 1885): An equation that explains the emission spectrum of hydrogen whenever an electron is jumping to the next orbital; four of the lines are in visible spectrum, and the remainder (residue) are in the ultraviolet.