--%>

Explain Tachyon paradox

Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero energy the tachyon is travelling with unlimited velocity, or is transcendent. Now a charged tachyon at a specified (non-infinite) speed will be travelling faster than light in its own medium, and must emit Cherenkov radiation. The loss of this energy will obviously decrease the energy of the tachyon that will make it go faster, resultant in a runaway reaction where some charged tachyon will rapidly race off to the transcendence.

Though the above argument outcomes in a curious end, the meat of the tachyon paradox is this: In relativity, the transcendence of the tachyon is frame-dependent. That is, even as a tachyon may emerge to be transcendent in one frame, it would emerge to others to still have non-zero energy. However in this situation we have a condition where in one frame it would encompass come to zero energy and would stop emitting the Cherenkov radiation; however in the other frame it would still contain energy left and must be emitting Cherenkov radiation on its way to the transcendence. As they can’t both be true, by the relativistic arguments, tachyons can’t be charged.

This argument obviously does not make any account of the quantum mechanical treatments of tachyons that complicate the circumstances a huge deal.

   Related Questions in Physics

  • Q : Explain Thomson experiment or Kelvin

    Thomson experiment: Kelvin effect (Sir W. Thomson [later Lord Kelvin]): Whenever an electric current flows via a conductor whose ends are maintained at various temperatures, heat is discharged at a rate just about proportional to the

  • Q : Radar gun problem Whenever a radar gun

    Whenever a radar gun states the pitch is 90 miles per hour at what point in the balls travel to home plate is the radar gun evaluating the velocity?

  • Q : What is Complementarity principle

    Complementarity principle (N. Bohr): The principle that a specified system can’t exhibit both wave-like behavior and particle-like behavior at similar time. That is, some experiments will reveal the wave-like nature of a system,

  • Q : Write a short note on diffuse reflection

    Write a short note on diffuse reflection?

  • Q : What is Eotvos law of capillarity

    Eotvos law of capillarity (Baron L. von Eotvos; c. 1870): The surface tension gamma of a liquid is associated to its temperature T, the liquid's critical temperature, T*, and its density rho by: gamma ~=

  • Q : What is Peltier effect Peltier effect

    Peltier effect (J.C.A. Peltier; 1834): The modification in temperature produced at a junction among the two dissimilar metals or semiconductors whenever an electric current passes through the junction.

  • Q : Difference between the cathode ray and

    Illustrate the difference between the cathode ray and beta ray?

  • Q : Explain Hawking radiation Hawking

    Hawking radiation (S.W. Hawking; 1973): The theory which black holes emit radiation similar to any other hot body. The virtual particle-antiparticle pairs are continuously being made in supposedly empty space. Infrequently, a pair wil

  • Q : Describe Wien displacement law Wien

    Wien displacement law: For a blackbody, the product result of the wavelength corresponding to the maximum radiances and the thermodynamic temperature is constant, then the Wien displacement law constant. As an outcome, as the temperature increases, th

  • Q : Define Rayleigh criterion or resolving

    Rayleigh criterion: resolving power: The criterion for determining how delicately a set of optics might be able to differentiate. This  starts with the supposition that central ring of one image must fall on the first dark ring of the other; for