--%>

Explain Tachyon paradox

Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero energy the tachyon is travelling with unlimited velocity, or is transcendent. Now a charged tachyon at a specified (non-infinite) speed will be travelling faster than light in its own medium, and must emit Cherenkov radiation. The loss of this energy will obviously decrease the energy of the tachyon that will make it go faster, resultant in a runaway reaction where some charged tachyon will rapidly race off to the transcendence.

Though the above argument outcomes in a curious end, the meat of the tachyon paradox is this: In relativity, the transcendence of the tachyon is frame-dependent. That is, even as a tachyon may emerge to be transcendent in one frame, it would emerge to others to still have non-zero energy. However in this situation we have a condition where in one frame it would encompass come to zero energy and would stop emitting the Cherenkov radiation; however in the other frame it would still contain energy left and must be emitting Cherenkov radiation on its way to the transcendence. As they can’t both be true, by the relativistic arguments, tachyons can’t be charged.

This argument obviously does not make any account of the quantum mechanical treatments of tachyons that complicate the circumstances a huge deal.

   Related Questions in Physics

  • Q : Define Ohm or SI unit of electric

    Ohm: Omega: O (after G. Ohm, 1787-1854) The derived SI unit of electric resistance, stated as the resistance among two points on a conductor whenever a constant potential difference of 1 V generates a current of 1 A in the conductor;

  • Q : Define Laue pattern Laue pattern (M.

    Laue pattern (M. von Laue): The pattern generated on a photographic film whenever high-frequency electromagnetic waves (like x-rays) are fired at the crystalline solid.

  • Q : Explain Cosmological constant

    Cosmological constant (Lambda): The constant mentioned to the Einstein field equation, proposed to admit the static cosmological solutions. At the time the present philosophical view was steady-state model of the space, where the Universe has been aro

  • Q : Explain Coulombs law Coulomb's law (C.

    Coulomb's law (C. de Coulomb): The basic law for electrostatics, equivalent to Newton's law of universal gravitation. It defines that the force between two point charges is proportional to the arithmetical product of their respective

  • Q : Explain Daltons law of partial pressures

    Dalton's law of partial pressures (J. Dalton): The net pressure of a mixture of ideal gases is equivalent to the sum of the partial pressures of its components; which is the sum of the pressures which each component would exert when it were present al

  • Q : Fundamental principles of the regulation

    Describe the fundamental principles of the regulation? Briefly describe the principles?

  • Q : Define Rydberg constant Rydberg

    Rydberg constant (Rydberg): The constant that governs the relationship of the spectral line features of an atom via the Rydberg formula. For hydrogen, it is around 1.097 x 107 m-1.

  • Q : Why Cadmium rods are given in a nuclear

    Cadmium rods are given in a nuclear reactor. Explain why?

  • Q : Explain Poisson equation and Poisson

    Explain Poisson equation and Poisson spot: Poisson equation (S.D. Poisson): The differential form of Gauss' law, that is, div E = rho, Pois

  • Q : Explain Event horizon Event horizon:

    Event horizon: The radius which a spherical mass should be compressed to in order to convert it into a black hole, or the radius at which the time and space switch responsibilities. Once within the event horizon, it is basically impossible to escape t