--%>

Explain group 15 elements.

The various elements of this group differ from one another in their chemical reactivity. Nitrogen differs from the rest of the members of the group due to its smaller size, high electronegativity, high ionization enthalpy and non-availability of d-orbitals. Nitrogen is chemically comparatively less reactive. It is because of high stability of its molecule, N2 in which the two nitrogen atoms are linked by triple bond (N ≡ N) and thus, possess high bond strength (941.4 kJ mol-1).


Among the elements of this group only nitrogen has a unique ability to form p π-p π multiple bonds with itself as well as with carbon oxygen. The multiple bonding in nitrogen occurs due to its small size. Nitrogen, thus, forms a diatomic molecule, N2. On the other hand, phosphorus, arsenic and antimony form tetrahedral molecules in their elemental state with formula E4. Each P atom is linked to three other atoms with P - P - P bond angle equal to 60°. Though phosphorus and heavier members of the family do not form p π-p πmultiple bonds easily, yet the multiple bonding of the type d π-p π can readily occur in these elements. This type of bonding is prominent for the phosphorus as is reflected in the formation of compounds such as POX3RN = PX2R3P = O or R3P = CH2 (R = alkylgroup).

Phosphorus and arsenic can form d π-p π bond also with transition metals their compounds like P(C2H3) and As(C6H5)3 an actas ligands. Recently, a few compounds of phosphorus and arsenic having multiple bonding like P = C, P ≡ C, P = N, P = P and As = Asgroups have been synthesized.

The common chemical characteristics of group 15 elements are discussed below:

Reactivity for hydrogen: the elements of group 15 form hydrides having the general formula EH3. All these are covalent in nature. These hydrides are listed below:

66_Group 15.png 

Reactivity towards halogen

All the elements of group 15 form two series of halides, i.e. trihalides and pentahalides of the type EX3 and EX5.

Nitrogen does not form pentahalides because of non-availability of the d-orbitals in its valence shell. Penta-halides are more covalent than trihalides. All these trihalides of these elements except those of nitrogen are stable. In case of nitrogen simply NF3 is known to be stable. The trihalides except BiF3 are predominantly covalent in character.

   Related Questions in Chemistry

  • Q : Question based on strength of solution

    Help me to go through this problem. On dissolving 1 mole of each of the following acids in 1 litre water, the acid which does not give a solution of strength 1N is: (a) HCl (b) Perchloric acid (c) HNO3 (d) Phosphoric acid

  • Q : Latent heat of vaporization Normal

    Normal butane (C4H10) is stored as a compressed liquid at 90°C and 1400 kPa. In order to use the butane in a low-pressure gas-phase process, it is throttled to 150 kPa and passed through a vaporizer. The butane emerges from the vaporizer as a

  • Q : Wavelengths which the human eye can see

    Briefly state the wavelengths which the human eye can see?

  • Q : Oxoacids of halogens Why oxidising

    Why oxidising character of oxoacids of halogens decreases as oxidation number increases?

  • Q : How reactive is Trimethylindium towards

    Illustrate the reason, how reactive is Trimethylindium towards oxygen and water?

  • Q : Determining highest normality What is

    What is the correct answer. Which of the given solutions contains highest normality: (i) 8 gm of KOH/litre (ii) N phosphoric acid (iii) 6 gm of NaOH /100 ml (iv) 0.5M H2SO4

  • Q : Vapour pressure related question Help

    Help me to solve this question. Which of the following is incorrect: (a) Relative lowering of vapour pressure is independent (b)The vapour pressure is a colligative property (c)Vapour pressure of a solution is lower than the vapour pressure of the solvent (d)The

  • Q : Molar mass of compound The freezing

    The freezing point of a solution having 4.8 g of a compound in 60 g of benzene is 4.48. Determine the molar mass of the compound (Kf = 5.1 Km-1) , (freezing point of  benzene = 5.5oC)          &n

  • Q : Biodegradable polymers what are the

    what are the examples of biodegradable polymers

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any