--%>

Explain Cosmological constant

Cosmological constant (Lambda): The constant mentioned to the Einstein field equation, proposed to admit the static cosmological solutions. At the time the present philosophical view was steady-state model of the space, where the Universe has been around for unlimited time. Prior analysis of the field equation pointed that the general relativity permitted dynamic cosmological models only (ones which are either contracting or expanding), however no static models. Einstein mentioned the most natural aberration to the field equation which he could think of: the addition of a term proportional to the space time metric tensor, g, with constant of proportionality being the cosmological constant as:

G + Lambda g = 8 pi T.

Hubble's afterward discovery of the expansion of the Universe pointed that the introduction of the cosmological constant was needless; had Einstein believed what his field equation was stating him, he could have declared the expansion of the Universe as perhaps the supreme and most convincing prediction of general relativity; he termed this the "greatest blunder of my life."

   Related Questions in Physics

  • Q : Explain Malus law Malus' law (E.L.

    Malus' law (E.L. Malus): The light intensity I of a ray with primary intensity I0 travelling via a polarizer at an angle theta among the polarization of the light ray and the polarization axis of the polarizer is specified by:

    Q : Define Static limit Static limit : The

    Static limit: The distance from a rotating black hole where no spectator can possibly stay at rest (with respect to the far-away stars) since of inertial frame dragging; this area is external of the event horizon, apart from at the poles where it meet

  • Q : Define the term wave fronts What do you

    What do you mean by the term wave fronts? Explain in short.

  • Q : What do you mean by communication What

    What do you mean by communication? Illustrate in brief.

  • Q : Define Le Chateliers principle Le

    Le Chatelier's principle (H. Le Chatelier; 1888): When a system is in equilibrium, then any modification imposed on the system tends to shift the equilibrium state to decrease the consequence of that applied change.

  • Q : What is Wave-particle duality

    Wave-particle duality: The principle of quantum mechanics that entails that light (and, certainly, all other subatomic particles) at times act similar to a wave, and sometime act similar to a particle, based on the experiment you are executing. For ex

  • Q : Define Photovoltaics Photovoltaics (PV)

    Photovoltaics (PV): It transform light directly into electricity. The typical current residential installation of 12m2 could produce around 1,300 kWh pa with a peak of around 1.9kW, though larger and more efficient installations are possibl

  • Q : What is Super fluidity Super fluidity :

    Super fluidity: The phenomenon by which, at adequately low temperatures, a fluid can flow with zero (0) viscosity. These causes are related with the superconductivity.

  • Q : Calculate the concentration A

    A dual-wavelength spectrometer uses 780 nm and 830 nm. The molar extinction coefficients for oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) at these two wavelengths are: e_HbO2_780nm = 710 cm-1M-1, e_Hb_780nm = 1075 cm

  • Q : Define Sievert or SI unit of dose

    Sievert: Sv: The derived SI unit of dose equivalent, stated as the absorbed dose of the ionizing radiation multiplied by internationally-agreed-upon dimensionless weights, as various kinds of ionizing radiation cause various kinds of damage in the liv