--%>

Brief note on the classification of Alloys

Write down a brief note on the classification of Alloys?

E

Expert

Verified

Alloys can be categorized by the number of their components. The alloy with two components is termed as binary alloy; one with three is termed as ternary alloy and so on. Alloys can be further categorized as either substitution or interstitial alloys, depending on their process of formation. In substitution alloys, the atoms of components are around of similar size and the different atoms are simply replaced for one another in the crystal structure. An illustration of a binary substitution alloy is brass, which is made up of copper and zinc. Interstitial alloys take place whenever the atoms of one component are substantially smaller than the other and the smaller atoms fit to the spaces (or interstices) among the bigger atoms.

   Related Questions in Physics

  • Q : Define Ehrenfest paradox Ehrenfest

    Ehrenfest paradox (Ehernfest, 1909): The special relativistic "paradox" including a fast rotating disc. As any radial segment of the disc is perpendicular to the direction of motion, there must be no length contraction of the radius;

  • Q : Weights in pounds of the liquid gallons

    Write down the weights in pounds of the liquid gallons? Briefly describe it.

  • Q : Velocity of the particle Determine the

    Determine the Velocity of the particle in terms of component veocities?

  • Q : Define Van der Waals force Van der

    Van der Waals force (J.D. van der Waals): The forces responsible for non-ideal behavior of gases, and for lattice energy of molecular crystals. There are three main causes: dipole-dipole interaction; dipole-induced dipole moments; and dispersion a for

  • Q : What is Beauty criterion Beauty

    Beauty criterion (Dirac) - The idea that more aesthetically pleasing a theory is the superior it is. In nature this criterion does not stand up to the actual test -- whether or not forecasts of a given theory agree with observational tests -- however

  • Q : Define Tesla or SI unit of the magnetic

    Tesla: T (after N. Tesla, 1870-1943): The derived SI unit of the magnetic flux density stated as the magnetic flux density of a magnetic flux of 1 Wb via an area of 1 m2; it therefore has units of Wb/m2.

  • Q : Explain Einstein field equation

    Einstein field equation: The cornerstone of Einstein's general theory of relativity, associating the gravitational tensor G to the stress-energy tensor T by the simple equation: G = 8 pi T<

  • Q : Explain Daltons law of partial pressures

    Dalton's law of partial pressures (J. Dalton): The net pressure of a mixture of ideal gases is equivalent to the sum of the partial pressures of its components; which is the sum of the pressures which each component would exert when it were present al

  • Q : Define Lumen or SI unit of luminous flux

    Lumen: lm: The derived SI unit of luminous flux, stated as the luminous flux produced by a uniform point source of 1 cd releasing its luminous energy over a solid angle of 1 sr; it therefore has units of cd sr.

  • Q : Define Hoop conjecture Hoop conjecture

    Hoop conjecture (K.S. Thorne, 1972): The conjecture (as so far unproven, although there is substantial proof to support it) that a non-spherical object, non-spherically compressed, will only form a black hole whenever all parts of the