--%>

Compute two sample standard deviations

Consider the following data for two independent random samples taken from two normal populations.

Sample 1 14 26 20 16 14 18

Sample 2 18 16 8 12 16 14

a) Compute the two sample means and the two sample standard deviations.

b) What is the point estimate of the difference between the two population means?

c) Assuming α = .10, conduct p-value based and critical-value based hypothesis tests for the equality

of means of the two populations.

d) What is the 90% confidence interval estimate of the difference between the two population means?

How do the results compare in all the three approaches to hypothesis testing?

 

E

Expert

Verified

Mean sample 1 = X1-bar = (14+26+20+16+14+18)/6 = 18

Mean sample 2 = X2-bar = (18+16+8+12+16+14)/6 = 14

Sample 1 SD = SD1

X1

X1-X1-bar

(X1-X1-bar)2

14

-4

16

26

8

64

20

2

4

16

-2

4

14

-4

16

18

0

0

Sum of (X1-X1-bar)2 = 104

S12 = 104/6-1

        = 20.8

SD1 =  = 4.56

Sample 2 SD = SD2

X2

X1-X1-bar

(X1-X1-bar)2

18

4

16

16

2

4

8

-6

36

12

-2

4

16

2

4

14

0

0

 

Sum of (X2-X2-bar)2 = 64

S22 = 64/6-1

        = 12.8

SD2 =  = 3.58

(b)

Point estimation of difference b/w two means = 18 - 14 = 4

(c)

t-test will be applied because sample size is small.

Hypothesis Formation

Null Hypothesis H0:    µ1 - µ2 = 0

Alternative Hypothesis H1:    µ1 - µ2 ≠ 0

t Statistic

t-statistic = (X1-bar  - x2-bar)/Sp

Where SP =

                  = 2.016

Critical value

Critical value of t with df=10 at 0.1 significance level = 1.812

Critical Region

Reject null hypothesis in favor of alternative if t is greater than t critical value of 1.812 or less than -1.812.

Computation

t-statistic = (18 - 14)/2.016

   = 5.95

Decision

Null hypothesis is rejected in favor of alternative as Z value is greater than Z critical value.

(d)

90% CI of difference between means = (18-14) - 1.812*2.016

                                                                    = 4 - 1.22 < µ < 4 + 1.22

                                                                    = 2.78< µ< 5.22

   Related Questions in Basic Statistics

  • Q : Compare the test results The grade

    The grade point averages of 61 students who completed a college course in financial accounting have a standard deviation of .790. The grade point averages of 17 students who dropped out of the same course have a standard deviation of .940. Do the data indicate a

  • Q : Sample Questions in Graphical Solution

    Solved problems in Graphical Solution Procedure, sample assignments and homework Questions: Minimize Z = 10x1 + 4x2 Subject to

  • Q : MANOVA and Reflection Activity

    Activity 10:   MANOVA and Reflection   4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOV

  • Q : State the hypotheses At Western

    At Western University the historical mean of scholarship examination score for freshman applications is 900. Population standard deviation is assumed to be known as 180. Each year, the assistant dean uses a sample of applications to determine whether the mean ex

  • Q : Homework help on Human memory & SPSS

    Effect of Scopolamine on Human Memory: A Completely Randomized Three Treamtent Design (N = 28) Scopolamine is a sedative used to induce sle

  • Q : Time series what are the four

    what are the four components of time series?

  • Q : Compute two sample standard deviations

    Consider the following data for two independent random samples taken from two normal populations. Sample 1 14 26 20 16 14 18 Sample 2 18 16 8 12 16 14 a) Com

  • Q : Calculate the p- value Medical tests

    Medical tests were conducted to learn about drug-resistant tuberculosis. Of 284 cases tested in New Jersey, 18 were found to be drug- resistant. Of 536 cases tested in Texas, 10 were found to be drugresistant. Do these data indicate that New Jersey has a statisti

  • Q : What is Interactive Response Time Law

    Interactive Response Time Law: • R = (L/X) - Z• Applies to closed systems.• Z is the think time. The time elapsed since&nb

  • Q : Derived quantities in Queuing system

    Derived quantities in Queuing system: • λ = A / T, Arrival rate • X = C / T, Throughput or completion rate • ρ =U= B / T, Utilization &bu