--%>

Compute two sample standard deviations

Consider the following data for two independent random samples taken from two normal populations.

Sample 1 14 26 20 16 14 18

Sample 2 18 16 8 12 16 14

a) Compute the two sample means and the two sample standard deviations.

b) What is the point estimate of the difference between the two population means?

c) Assuming α = .10, conduct p-value based and critical-value based hypothesis tests for the equality

of means of the two populations.

d) What is the 90% confidence interval estimate of the difference between the two population means?

How do the results compare in all the three approaches to hypothesis testing?

 

E

Expert

Verified

Mean sample 1 = X1-bar = (14+26+20+16+14+18)/6 = 18

Mean sample 2 = X2-bar = (18+16+8+12+16+14)/6 = 14

Sample 1 SD = SD1

X1

X1-X1-bar

(X1-X1-bar)2

14

-4

16

26

8

64

20

2

4

16

-2

4

14

-4

16

18

0

0

Sum of (X1-X1-bar)2 = 104

S12 = 104/6-1

        = 20.8

SD1 =  = 4.56

Sample 2 SD = SD2

X2

X1-X1-bar

(X1-X1-bar)2

18

4

16

16

2

4

8

-6

36

12

-2

4

16

2

4

14

0

0

 

Sum of (X2-X2-bar)2 = 64

S22 = 64/6-1

        = 12.8

SD2 =  = 3.58

(b)

Point estimation of difference b/w two means = 18 - 14 = 4

(c)

t-test will be applied because sample size is small.

Hypothesis Formation

Null Hypothesis H0:    µ1 - µ2 = 0

Alternative Hypothesis H1:    µ1 - µ2 ≠ 0

t Statistic

t-statistic = (X1-bar  - x2-bar)/Sp

Where SP =

                  = 2.016

Critical value

Critical value of t with df=10 at 0.1 significance level = 1.812

Critical Region

Reject null hypothesis in favor of alternative if t is greater than t critical value of 1.812 or less than -1.812.

Computation

t-statistic = (18 - 14)/2.016

   = 5.95

Decision

Null hypothesis is rejected in favor of alternative as Z value is greater than Z critical value.

(d)

90% CI of difference between means = (18-14) - 1.812*2.016

                                                                    = 4 - 1.22 < µ < 4 + 1.22

                                                                    = 2.78< µ< 5.22

   Related Questions in Basic Statistics

  • Q : Principles of data analysis For the

    For the data analysis project, you will address some questions that interest you with the statistical methodology we are learning in class. You choose the questions; you decide how to collect data; you do the analyses. The questions can address almost any topic,

  • Q : Correlation analysis and the regression

    1).  When you take out a mortgage, there are many different kinds of costs.  Usually the two largest are the interest rate (annual percentage that determines the size of your monthly payment) and the loan fee (a one-time percentage charged to you at the time

  • Q : Define Service Demand Law

    Service Demand Law:• Dk = SKVK, Average time spent by a typical request obtaining service from resource k• DK = (ρk/X

  • Q : STATISTICS Question This week you will

    This week you will analyze if women drink more sodas than men.  For the purposes of this Question, assume that in the past there has been no difference.  However, you have seen lots of women drinking sodas the past few months.  You will perform a hypothesis test to determine if women now drink more

  • Q : Sample z test and Sample t test A

    A random sample X1, X2, …, Xn is from a normal population with mean µ and variance σ2. If σ is unknown, give a 95% confidence interval of the population mean, and interpret it. Discuss the major diff

  • Q : MANOVA and Reflection Activity

    Activity 10:   MANOVA and Reflection   4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOV

  • Q : Report on Simple Random Sampling with

    One of my friend has a problem on simple random sampling. Can someone provide a complete Report on Simple Random Sampling with or without replacement?

  • Q : Probability how can i calculate

    how can i calculate cumulative probabilities of survival

  • Q : Compute two sample standard deviations

    Consider the following data for two independent random samples taken from two normal populations. Sample 1 14 26 20 16 14 18 Sample 2 18 16 8 12 16 14 a) Com

  • Q : Problem on Model Checking Part (a).

    Part (a). Draw a state diagram for a car with the following state variables: D indicating whether the car is in drive; B indicating the brake pedal is depressed; G indicating the gas pedal is depressed; and M indicating whether the car is moving. (For example, the sta