--%>

Compute two sample standard deviations

Consider the following data for two independent random samples taken from two normal populations.

Sample 1 14 26 20 16 14 18

Sample 2 18 16 8 12 16 14

a) Compute the two sample means and the two sample standard deviations.

b) What is the point estimate of the difference between the two population means?

c) Assuming α = .10, conduct p-value based and critical-value based hypothesis tests for the equality

of means of the two populations.

d) What is the 90% confidence interval estimate of the difference between the two population means?

How do the results compare in all the three approaches to hypothesis testing?

 

E

Expert

Verified

Mean sample 1 = X1-bar = (14+26+20+16+14+18)/6 = 18

Mean sample 2 = X2-bar = (18+16+8+12+16+14)/6 = 14

Sample 1 SD = SD1

X1

X1-X1-bar

(X1-X1-bar)2

14

-4

16

26

8

64

20

2

4

16

-2

4

14

-4

16

18

0

0

Sum of (X1-X1-bar)2 = 104

S12 = 104/6-1

        = 20.8

SD1 =  = 4.56

Sample 2 SD = SD2

X2

X1-X1-bar

(X1-X1-bar)2

18

4

16

16

2

4

8

-6

36

12

-2

4

16

2

4

14

0

0

 

Sum of (X2-X2-bar)2 = 64

S22 = 64/6-1

        = 12.8

SD2 =  = 3.58

(b)

Point estimation of difference b/w two means = 18 - 14 = 4

(c)

t-test will be applied because sample size is small.

Hypothesis Formation

Null Hypothesis H0:    µ1 - µ2 = 0

Alternative Hypothesis H1:    µ1 - µ2 ≠ 0

t Statistic

t-statistic = (X1-bar  - x2-bar)/Sp

Where SP =

                  = 2.016

Critical value

Critical value of t with df=10 at 0.1 significance level = 1.812

Critical Region

Reject null hypothesis in favor of alternative if t is greater than t critical value of 1.812 or less than -1.812.

Computation

t-statistic = (18 - 14)/2.016

   = 5.95

Decision

Null hypothesis is rejected in favor of alternative as Z value is greater than Z critical value.

(d)

90% CI of difference between means = (18-14) - 1.812*2.016

                                                                    = 4 - 1.22 < µ < 4 + 1.22

                                                                    = 2.78< µ< 5.22

   Related Questions in Basic Statistics

  • Q : Sample Questions in Graphical Solution

    Solved problems in Graphical Solution Procedure, sample assignments and homework Questions: Minimize Z = 10x1 + 4x2 Subject to

  • Q : Point of estimate standing data se to

    standing data se to develop a point of estimate

  • Q : Problem on Model Checking Part (a).

    Part (a). Draw a state diagram for a car with the following state variables: D indicating whether the car is in drive; B indicating the brake pedal is depressed; G indicating the gas pedal is depressed; and M indicating whether the car is moving. (For example, the sta

  • Q : Decision Variables Determine Decision

    Determine Decision Variables: Let X1 be the number of private homes to be inspectedLet X2 be the number of office buildings to be inspect

  • Q : Safety and Liveness in Model Checking

    Safety and Liveness in Model Checking Approach; •? Safety: Nothing bad happens •? Liveness: Something good happens •? Model checking is especially good at verifying safety and liveness properties    –?Concurrency i

  • Q : State Kendalls notation

    Kendall’s notation:  A/B/C/K/m/Z A, Inter-arrival distribution M exponential D constant or determ

  • Q : Creating Grouped Frequency Distribution

    Creating Grouped Frequency Distribution: A) At first we have to determine the biggest and smallest values. B) Then we have to Calculate the Range = Maximum - Minimum C) Choose the number of classes wished for. This is generally between 5 to 20. D) Find out the class width by dividing the range b

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : Stats The College Board SAT college

    The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012). Sample data showing the math and writing scores for a sample of twelve students who took the SAT follow. http://west.cengagenow.com/ilrn/books/assb12h/images/webfiles/

  • Q : Use the NW corner rule to find an

      (a) Use the NW corner rule to find an initial BFS, then solve using the transportation simplex method. Indicate your optimal objective function value. (b) Suppose we increase s1 from 15 to 16, and d3 from 10 to 11. S