--%>

Compute two sample standard deviations

Consider the following data for two independent random samples taken from two normal populations.

Sample 1 14 26 20 16 14 18

Sample 2 18 16 8 12 16 14

a) Compute the two sample means and the two sample standard deviations.

b) What is the point estimate of the difference between the two population means?

c) Assuming α = .10, conduct p-value based and critical-value based hypothesis tests for the equality

of means of the two populations.

d) What is the 90% confidence interval estimate of the difference between the two population means?

How do the results compare in all the three approaches to hypothesis testing?

 

E

Expert

Verified

Mean sample 1 = X1-bar = (14+26+20+16+14+18)/6 = 18

Mean sample 2 = X2-bar = (18+16+8+12+16+14)/6 = 14

Sample 1 SD = SD1

X1

X1-X1-bar

(X1-X1-bar)2

14

-4

16

26

8

64

20

2

4

16

-2

4

14

-4

16

18

0

0

Sum of (X1-X1-bar)2 = 104

S12 = 104/6-1

        = 20.8

SD1 =  = 4.56

Sample 2 SD = SD2

X2

X1-X1-bar

(X1-X1-bar)2

18

4

16

16

2

4

8

-6

36

12

-2

4

16

2

4

14

0

0

 

Sum of (X2-X2-bar)2 = 64

S22 = 64/6-1

        = 12.8

SD2 =  = 3.58

(b)

Point estimation of difference b/w two means = 18 - 14 = 4

(c)

t-test will be applied because sample size is small.

Hypothesis Formation

Null Hypothesis H0:    µ1 - µ2 = 0

Alternative Hypothesis H1:    µ1 - µ2 ≠ 0

t Statistic

t-statistic = (X1-bar  - x2-bar)/Sp

Where SP =

                  = 2.016

Critical value

Critical value of t with df=10 at 0.1 significance level = 1.812

Critical Region

Reject null hypothesis in favor of alternative if t is greater than t critical value of 1.812 or less than -1.812.

Computation

t-statistic = (18 - 14)/2.016

   = 5.95

Decision

Null hypothesis is rejected in favor of alternative as Z value is greater than Z critical value.

(d)

90% CI of difference between means = (18-14) - 1.812*2.016

                                                                    = 4 - 1.22 < µ < 4 + 1.22

                                                                    = 2.78< µ< 5.22

   Related Questions in Basic Statistics

  • Q : Safety and Liveness in Model Checking

    Safety and Liveness in Model Checking Approach; •? Safety: Nothing bad happens •? Liveness: Something good happens •? Model checking is especially good at verifying safety and liveness properties    –?Concurrency i

  • Q : STATISTICS Question This week you will

    This week you will analyze if women drink more sodas than men.  For the purposes of this Question, assume that in the past there has been no difference.  However, you have seen lots of women drinking sodas the past few months.  You will perform a hypothesis test to determine if women now drink more

  • Q : Data Description 1. If the mean number

    1. If the mean number of hours of television watched by teenagers per week is 12 with a standard deviation of 2 hours, what proportion of teenagers watch 16 to 18 hours of TV a week? (Assume a normal distribution.) A. 2.1% B. 4.5% C. 0.3% D. 4.2% 2. The probability of an offender having a s

  • Q : Decision Variables Determine Decision

    Determine Decision Variables: Let X1 be the number of private homes to be inspectedLet X2 be the number of office buildings to be inspect

  • Q : Write out the null hypothesis 1.

    1. (AAC/ACA c9q1).  For each of the following studies, decide whether you can reject the null hypothesis that the groups come from identical populations. Use the alpha = .05 level.1a.

  • Q : Data Description 1. If the mean number

    1. If the mean number of hours of television watched by teenagers per week is 12 with a standard deviation of 2 hours, what proportion of teenagers watch 16 to 18 hours of TV a week? (Assume a normal distribution.) A. 2.1% B. 4.5% C. 0.3% D. 4.2% 2. The probability of an offender having a s

  • Q : Derived quantities in Queuing system

    Derived quantities in Queuing system: • λ = A / T, Arrival rate • X = C / T, Throughput or completion rate • ρ =U= B / T, Utilization &bu

  • Q : Model Checking Approach Model Checking

    Model Checking Approach: • Specify program model and exhaustively evaluate that model against a speci?cation        –Check that properties hold   

  • Q : Compute two sample standard deviations

    Consider the following data for two independent random samples taken from two normal populations. Sample 1 14 26 20 16 14 18 Sample 2 18 16 8 12 16 14 a) Com

  • Q : State the hypotheses At Western

    At Western University the historical mean of scholarship examination score for freshman applications is 900. Population standard deviation is assumed to be known as 180. Each year, the assistant dean uses a sample of applications to determine whether the mean ex

  • ©TutorsGlobe All rights reserved 2022-2023.