The Ideal Inverter:Prior to examining the performance of bipolar transistor inverter, it is helpful to have knowledge of what the needs of an ideal inverter are. The gate is predicted to accept an input logic signal in defined voltage levels, invert it and give an output voltage to drive other gates as shown in figure below.
Figure: The Ideal Inverter
a) Logic Voltages:
logic HI VH = VCC logic LO VL = 0V If Vi < VCC/2, VO = VH = VCCIf Vi > VCC/2, VO = VL = 0V(b) Drive Capability:Ideally ISNK, ISCE → ∞
VO must be independent of load conditions(c) Noise Immunity:
The output must be insensitive to noise superimposed on the input and must provide defined switching.d) Switching Speed:
Ideally, there must be no switching delay however an instantaneous response of the output to a change at input.Bipolar Transistor Switch:Basically, the bipolar transistor switch shown in figure below functions in one or other of two states.OFF state – Transistor in the Cut-Off mode.ON state – Transistor in the Saturation mode.
Figure: A Simple Bipolar Transistor Inverter
Base resistor RB, serves to control the level of base current. The collector resistor RC, serves to limit the maximum collector current however acts basically as an output load for the transistor. Figure below shows a set of output characteristics for the transistor as IC vs. VCE for the range of values of IB. The load line can be superimposed on such curves which states the operating path followed by the output of transistor for particular load resistor, RC and supply voltage VCC. This path is set up as follows:Load line: IC = (VCC - VCE)/RC = - [(1/RC) VCE] + (VCC/RC); the equation of a straight line.If IC = 0 then, VCE/RC = VCC/RC => Vo = VCE = VCCIf VCE = 0 then, IC = VCC/RC = IC maxSuch points can be employed to plot the load line superimposed on the characteristic curves of transistor. Figures below show the contrast between operating the transistor as an amplifying device in forward active region and operating it as a logic switch where it consists of two states; either ON in saturation mode or OFF in the cut-off mode.(i) Operation as an Amplifier:Whenever operating in linear active region, base emitter junction is forward biased and the base collector junction is reverse biased. Beneath such conditions:IC = βF IB and Vo = VCE = VCC - ICRCThis can be seen that a small signal superimposed on base current is amplified to provide a much greater change on collector current. The variation in collector current, passing via the load resistor, RC, transforms this into an output voltage signal. Note that, as the IC rises, VO reduces and vice-versa and for this reason the signal is inverted from input to output.(ii) Operation as a Switch:Whenever acting as a switch, the transistor operates exterior of the linear active region beneath steady-state conditions and only passes via it when changing the state. As a switch, the transistor functions either in cut-off region or the saturation region.Cut-Off: With Vi = 0, VBE = 0, IB = 0, then IC = 0, Transistor is OFF Then VO = VCC – ICRC = VCC Therefore, with Vi = 0 = VL input LO, we encompass VO = VCC = VH output HIThis is the logic inverting action.Saturation:In linear active region, IC = βF IB. Whenever using the transistor as a switch, the load resistor RC, is employed as a current limiting resistor to limit the collector current to IC = IC max = VCC/RC. When a high base current is injected to the transistor in such a way that:βF IB >> ICMAX that is, IB >> ICMAX/ βFThen the transistor can’t amplify the base current, IB, since the potential resultant current can’t flow in the collector, as the collector current is restricted to IC max. In this case, the transistor can’t carry on executing in the forward active region and is driven into saturation region. Here with:Vi = Vcc , IB = (VCC - VBE)/RB then IC = ICMAX = (VCC - VCESAT)/RCThe Transistor is ON and Vo = VCE SAT → 0 usually 0.1 – 0.2VHence with,Vi = VCC = VH input HI we have, VO = VCESAT = VL output LO This is as well as logic inverting action. In saturation, the base of transistor is stated to be overdriven. That is to state more current is fed into the base than is needed to produce the maximum current which can flow in the collector. Usually, 4 to 5 times the current required to bring the collector current to IC max is injected to the base to guarantee that it is overdriven and the transistor executes in the saturation mode.
Figure: Operation of the Bipolar Transistor as an Amplifier
Figure: Operation of the Bipolar Transistor as a Switch
Latest technology based Electrical Engineering Online Tutoring Assistance
Tutors, at the www.tutorsglobe.com, take pledge to provide full satisfaction and assurance in Electrical Engineering help via online tutoring. Students are getting 100% satisfaction by online tutors across the globe. Here you can get homework help for Electrical Engineering, project ideas and tutorials. We provide email based Electrical Engineering help. You can join us to ask queries 24x7 with live, experienced and qualified online tutors specialized in Electrical Engineering. Through Online Tutoring, you would be able to complete your homework or assignments at your home. Tutors at the TutorsGlobe are committed to provide the best quality online tutoring assistance for Electrical Engineering Homework help and assignment help services. They use their experience, as they have solved thousands of the Electrical Engineering assignments, which may help you to solve your complex issues of Electrical Engineering. TutorsGlobe assure for the best quality compliance to your homework. Compromise with quality is not in our dictionary. If we feel that we are not able to provide the homework help as per the deadline or given instruction by the student, we refund the money of the student without any delay.
Resistivity Method tutorial all along with the key concepts of Survey Fundamentals, Electrode arrays, Array descriptions, Wenner array, Schlumberger array, Dipole-dipole (Eltran) array, Lee array, Signal-contribution sections, Depth penetration
there are two kinds in video modulation - positive modulation (while the intensity of picture brightness results increase in amplitude of the modulated envelope, it is termed as positive modulation.), negative modulation
The transverse part of the dicot root (Bean) displays the following plan of arrangement of tissues from the periphery to the centre.
Hire stats tutors for statistics homework help, statistics assignment help. get solved problems online from online experts.
theory and lecture notes of sample system all along with the key concepts of sample system, transaction flow, homework help, assignment help. tutorsglobe offers homework help, assignment help and tutor’s assistance on sample system.
Radio Receier chooses the wanted radio station from several radio stations, and rejects all others not wanted signals.
tutorsglobe.com translocation types assignment help-homework help by online translocation of solutes tutors
Get the finest Change Management Essay Writing Assignment Help at feasible prices with 24x7 support for great academic success.
tutorsglobe.com coordination sphere assignment help-homework help by online terminologies tutors
The professional Theoretical Economics Assignment Help tutors offer complete support, go ahead and simplify and score maximum!
tutorsglobe.com demand schedule and demand curve assignment help-homework help by online theory of demand tutors
www.tutorsglobe.com - free tutorials on structured analysis development method, design dfd data flow diagrams in theory of system analysis methods in programming languages, get assignment help - homework help by tutors.
tutorsglobe.com time periods and price fixation assignment help-homework help by online equilibrium price tutors
tutorsglobe.com phosphorus pentachloride assignment help-homework help by online compounds of phosphorus tutors
Utility of Financial Accounting gives well specified rules and principles of recording business transactions.
1935284
Questions Asked
3689
Tutors
1440239
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!