--%>

rate of flow of nitrogen

The feed to an ammonia synthesis reactor contain 25 mole% nitrogen and the balance hydrogen. The flow rate of the stream is 3000 kg/hr. Calculate the rate of flow of nitrogen into the reactor in kg/hr. (Hint: First calculate the average molecular weight of the mixture).

   Related Questions in Chemical Engineering

  • Q : Problem on steam flow in a pipe A

    A stream of steam at 15 bar and 300 oC is used to produce work using a steam turbine. a. Before the turbine, steam flows in a pipe (4 cm in diameter) at a mass flow rate of 3 g/s. Calculate the mean velocity in the pipe

  • Q : Bsc what is the latent heat of

    what is the latent heat of vaporization for hexane

  • Q : Problem on empirical van Laar equation

    At atmospheric pressure ethyl acetate and ethyl alcohol form an azeotropic mixture containing 53.9% mole of ethyl acetate and boiling at 71.8°C. a) Estimate the values of A & B in the empirical van Laar equation

  • Q : Problem on heat required for process A

    A steady-state flow process is used to heat methanol in a tank. The incoming stream is at 2 bar and 25 oC and has a flow rate of 5 kg/s. The outgoing stream is at 1 bar, 100 oC. Heating is provided by a heating coil immersed in a tank. Given the

  • Q : Problem on molar flow rate I) Sulphur

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may as

  • Q : Problem on entropy A heater (heat

    A heater (heat source temperature = 527 K) and turbine are connected in series as shown below:

    Q : Chemical flow I) Sulphur dioxide (SO2)

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may assume ideal gas behaviour. For SO2 take the heat capacity at constant pressure to be CP/R = 3.267+5

  • Q : Estimating solubility of oxygen in water

    The Henry's law constant for oxygen in water is as follows: Temperature, °C                     0              &nbs

  • Q : Problem on laboratory solution You are

    You are asked to make up a laboratory solution of 0.10 molar H2SO4 from concentrated (96%) H2SO4 at 56°F. The barometric pressure reads 750 mmHg. You look up the specific gravity of 96% H2SO4 and find it is listed at 1.858. Calculate: (a) th

  • Q : Temprature To determine the temperature

    To determine the temperature that occurred in a ?re in a warehouse, the arson investigator noticed that the relief valve on a methane storage tank had popped open at 3000 psig, the rated value. Before the ?re started, the tank was presumably at ambient conditions and the gage read 1950 psig. If