Problem on weight fraction
A gas contains 350 ppm of H2S in CO2 at 72°F and 1.53 atm pressure. If the gas is liquified, what is the weight fraction H2S?
Expert
Now we consider 1liter of CO2 at 72deg F {[K] ≡ (72+ 459.67) × 5/9}=295.3722 K 1.53 atm
So No moles n= PV/RT =1.53atm*1liter/(0.08205liter-atm/K-mole*295.3722) =0.063131mole
So wt of CO = 0.063131mole*28g/mole =1.76767g
Now 350 ppm H2S would have a volume 350 microlitre ( µL ) per litre, = 350 ppm =350E-6 litre
So No of moles H2S = n= PV/RT =1.53atm*(350E-6)liter/(0.08205liter-atm/K-mole*295.3722K) = 2.20959E-05 mole
The MW H2S = 34.116g/mole
So wt of H2S = 0.000753823 g
So total weight =1.768423823g
So %wt H2S = (0.0007538236/1.768423823g)*100%=0.04262%
The feed to an ammonia synthesis reactor contain 25 mole% nitrogen and the balance hydrogen. The flow rate of the stream is 3000 kg/hr. Calculate the rate of flow of nitrogen into the reactor in kg/hr. (Hint: First calculate the average molecular weight of the mixture).
Natural Gas is flowing through a 10 inch schedule 40 pipe. The gas is at 109°F and 7.3 psig. The outside air temperature is 92°F. If the flow rate of the gas is 8,000 SCFM: What is the flow rate in lb/hr?
I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may as
I need to solve the material and energy balance for the att.
A steady-state flow process is used to heat methanol in a tank. The incoming stream is at 2 bar and 25 oC and has a flow rate of 5 kg/s. The outgoing stream is at 1 bar, 100 oC. Heating is provided by a heating coil immersed in a tank. Given the
A stream of steam at 15 bar and 300 oC is used to produce work using a steam turbine. a. Before the turbine, steam flows in a pipe (4 cm in diameter) at a mass flow rate of 3 g/s. Calculate the mean velocity in the pipe
The feed of an ammonia synthesis reactor is 25% (lbmole) nitrogen with the balance hydrogen. The flow rate is 3000 kg/h at 65°C and 95 bar. Calculate the flow rate of nitrogen to the reactor in kg/hr.
Cumene is produced by the vapour phase reaction of benzene with propylene. The fresh feeds have the following compositions: Benzene: 99% w/w benzene, 1% w/w toluene Propylene: 98% v/v propylene,
Consider a chemical reaction: a CH3-CH=CH2 + b NH3 + c O2 → d CH2=CH-C≡N + e H2O 1. &
The Clausius-Clapeyron equation gives us an expression for dP/dT. Now we will derive an analog to the Clausius-Clapeyron equation by obtaining an expression for dT/dµ when two phases are at equilibrium. For simplicity, let’s derive this fo
18,76,764
1938536 Asked
3,689
Active Tutors
1436725
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!