--%>

Problem on Redlich-Kwong equation

i) Welcome to Beaver Gas Co.! Your first task is to calculate the annual gross sales of our superpure-grade nitrogen and oxygen gases.

a) The total gross sales of N2 is 30,000 units. Take the volume of the cylinder to be 43 L, the pressure to be 12,400 kPa, and the cost to be $6.I/kg. Compare your result to that you would obtain using the ideal gas model.

b) Repeat for 30,000 units of O2 at 15,000 kPa and $9/kg.

ii) Use the Redlich-Kwong equation to calculate the size of vessel you would need to contain 30 kg of acetylene mixed with 50 kg of n-butane at 30 bar and 450 K. The binary interaction coefficient is given by k12 = 0.092.

E

Expert

Verified

(i)

(a) The amount in kg, of superpure grade N2, per container is calculated below,

PV = nRT

n = PVT1/(TP1V1/n1)) ... where suffix 1 indicates conditions at STP.

n = (12400)(43x10-3)(273)/((298)(101)(22.4)) = 0.22 kmol

m = Mn = 28 x 0.22 = 6.16 kg.

Hence according to Ideal gas law, there'll be 6.16 kg per unit of superpure-grade N2.

And the annual gross sales will be $ 6.1 x 6.16 x 30000 = $1127280 = $1.13 million

(b) The amount in kg, of superpure grade O2, per container is calculated below,

PV = nRT

n = PVT1/(TP1V1/n1)) ... where suffix 1 indicates conditions at STP.

n = (15000)(43x10-3)(273)/((298)(101)(22.4)) = 0.27 kmol

m = Mn = 32 x 0.27 = 8.64 kg.

Hence according to Ideal gas law, there'll be 8.64 kg per unit of superpure-grade O2.

And the annual gross sales will be $ 9 x 8.64 x 30000 = $ 2332800 = $2.33 million

(ii)

The following data is obtained from Internet.

Acetylene

MW 26 g/mol
Pc 61.91 bar
Tc 35.1 oC

n-butane

MW 58.12
Pc   38 bar
T  425 K

The total amount of mixture in kmol = 30/26 + 50/58.12 = 2.01

x1 = mole fraction of acetylene = (30/26)/2.01 = 0.57

x2 = mole fraction of n-butane = 0.43

Redlich-Kwong parameters (Note that P is in kPa and T is in K)

acetylene:

a1 = 0.427R2Tc2.5/Pc = 0.427(8.314)2(308.2)2.5/6273 = 7846
b1 = 0.0866RTc/Pc = 0.0866(8.314)(308.2)/6273 = 0.0354

n-butane:

a2 = 0.427R2Tc2.5/Pc = 0.427(8.314)2(425)2.5/3850 = 28547

b2 = 0.0866RTc/Pc = 0.0866(8.314)(425)/3850 = 0.0795

Using the following mixing rules, we'll find a and b for the binary mixture.

aij = (1 – kij)ai1/2aj1/2  and a = ΣΣxixjaij  ; b = Σxib  ......(1)

a12 = a21 = (1 – 0.092)(7846)1/2(28547)1/2 = 13589

a11 = a1; and a22 = a2.

Now using equation (1)

a = (0.57)(0.57)(7846) + (0.57)(0.43)(13589) + (0.43)(0.43) (28547) + (0.43)(0.57)(13589) = 14489

b = 0.57x0.0354 + 0.43x0.0795 = 0.054

The Redlich Kwong equation,

P = {RT/(Vm – b)} - {a/(T1/2Vm(Vm+b))}

Use the given values,

P = 30 bar = 3030.75 kPa

T = 450 K

After rearraning the Redlich-Kwong equation we get a cubic polynomial in Vm.
64483Vm3 – 79465Vm2 – 4479Vm – 782 = 0

We obtain the roots using MATLAB's roots function,

1.29
-0.0305 + 0.0919i
-0.0305 - 0.0919i

Hence the volume of the vessel is Vm x No of moles,
= 1.29 x 2.01 = 2.6 m3 = 2600 lit.

   Related Questions in Chemistry

  • Q : Problem on reversible and irreversible

    The second law states that  dS ≥ (dQ/T), where dS = dQ/T for a reversible process and dS > dQ/T for an irreversible process.   a. Show that since dW12 = -dW21 (dWreverse = -dWforward) for a r

  • Q : Surface Tension Vapour Pressure The

    The vapor pressure of small liquid drops depends on the drop size. Although the surface properties of a liquid are different from those of the bulk liquid, the special surface properties can be ignored except in a few situations. One is the case in which a liquid is dispersed into fine dr

  • Q : Question based on relative lowering of

    Give me answer of this question. When a non-volatile solute is dissolved in a solvent, the relative lowering of vapour pressure is equal to: (a) Mole fraction of solute (b) Mole fraction of solvent (c) Concentration of the solute in grams per litre

  • Q : Concentration of urea Help me to go

    Help me to go through this problem. 6.02x 1020 molecules of urea are present in 100 ml of its solution. The concentration of urea solution is: (a) 0.02 M (b) 0.01 M (c) 0.001 M (d) 0.1 M (Avogadro constant, N4= 6.02x 1023mol -1)<

  • Q : Describe characteristics of halides and

    Halides characteristics

  • Q : Chem Silicon has three naturally

    Silicon has three naturally occurring isotopes. 28Si, mass = 27.976927; 29Si, mass = 28.976495; 30Si, mass = 29.973770 and 3.10% abundance. What is the abundance of 28Si?

  • Q : Moles of chloride ion Select the right

    Select the right answer of the question. A solution of CaCl2 is 0.5 mol litre , then the moles of chloride ion in 500ml will be : (a) 0.25 (b) 0.50 (c) 0.75 (d)1.00

  • Q : Film Mass Transport Sulfur trioxide

    Sulfur trioxide (SO3) is manufactured by the gas-phase oxidation of SO2 over a platinum catalyst: SO2 + ½ O2 à SO3 The catalyst is a non-porous ext

  • Q : Organic and inorganic substances living

    living beings are made up of organic and inorganic substances.according to their complexity of their molecules how can ach of these substances be classified?

  • Q : Forms a molecule to an organic molecule

    Briefly state what forms a molecule to an organic molecule?