--%>

Explain Uncertainty principle

Uncertainty principle (W. Heisenberg; 1927): A principle, central to the quantum mechanics that states which two complementary parameters (like energy and time, position and momentum, or angular momentum and angular displacement) can’t both be recognized to the infinite accuracy; the more you know regarding one, the less you know regarding the other.

It can be exemplified in a fairly clear manner as it relates to position versus momentum: To see something (let's state an electron), we have to fire the photons at it; they bounce off and come back to us, therefore we can "see" it. When you select low-frequency photons, with a low energy, they do not impart a lot momentum to the electron; however they give you a very fuzzy picture, therefore you have a higher uncertainty in position and hence you can contain a higher certainty in the momentum. On other hand, when you were to fire very high-energy photons (that is x-rays or gammas) at the electron, they would provide you a very apparent picture of where the electron is (that is, higher certainty in position), however would impart a big deal of momentum to the electron (that is, higher uncertainty in the momentum).

In a more generalized intellect, the uncertainty principle states us that the performance of observing modifications the observed in primary way.

   Related Questions in Physics

  • Q : What is Cherenkov radiation Cherenkov

    Cherenkov radiation (P.A. Cherenkov): The radiation emitted by a huge particle which is moving faster than light in the medium via which it is travelling. No particle can travel faster than the light in vacuum, however the speed of light in other medi

  • Q : What do you mean by the term density

    What do you mean by the term density? Briefly explain it.

  • Q : Define Ehrenfest paradox Ehrenfest

    Ehrenfest paradox (Ehernfest, 1909): The special relativistic "paradox" including a fast rotating disc. As any radial segment of the disc is perpendicular to the direction of motion, there must be no length contraction of the radius;

  • Q : What is Gaia hypothesis Gaia hypothesis

    Gaia hypothesis (J. Lovelock, 1969): The thought that the Earth as an entire must be regarded as a living organism and that biological procedures stabilize the atmosphere.

  • Q : Explain Drake equation Drake equation

    Drake equation (F. Drake; 1961): The method of estimating the number of intelligent, scientific species (that is, able to communicate with other species) in subsistence in our space. N

  • Q : What is Dulong-Petit law Dulong-Petit

    Dulong-Petit law (P. Dulong, A.T. Petit; 1819): The molar heat capacity is around equivalent to the three times the ideal gas constant: C = 3 R

  • Q : Define Van der Waals force Van der

    Van der Waals force (J.D. van der Waals): The forces responsible for non-ideal behavior of gases, and for lattice energy of molecular crystals. There are three main causes: dipole-dipole interaction; dipole-induced dipole moments; and dispersion a for

  • Q : Explain Tachyon Tachyon: The purely

    Tachyon: The purely speculative particle that is supposed to travel faster than light. According to Sir Einstein's equations of special relativity, a particle with imaginary rest mass and a velocity more than c would contain a real momentum and energy

  • Q : Define Carnots theorem Carnot's theorem

    Carnot's theorem (S. Carnot): The theorem that states that no engine operating between the two temperatures can be more proficient than a reversible engine.

  • Q : Collision & Transition State Theory

    Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions. b)      Calculate the temperature wh