--%>

Explain Uncertainty principle

Uncertainty principle (W. Heisenberg; 1927): A principle, central to the quantum mechanics that states which two complementary parameters (like energy and time, position and momentum, or angular momentum and angular displacement) can’t both be recognized to the infinite accuracy; the more you know regarding one, the less you know regarding the other.

It can be exemplified in a fairly clear manner as it relates to position versus momentum: To see something (let's state an electron), we have to fire the photons at it; they bounce off and come back to us, therefore we can "see" it. When you select low-frequency photons, with a low energy, they do not impart a lot momentum to the electron; however they give you a very fuzzy picture, therefore you have a higher uncertainty in position and hence you can contain a higher certainty in the momentum. On other hand, when you were to fire very high-energy photons (that is x-rays or gammas) at the electron, they would provide you a very apparent picture of where the electron is (that is, higher certainty in position), however would impart a big deal of momentum to the electron (that is, higher uncertainty in the momentum).

In a more generalized intellect, the uncertainty principle states us that the performance of observing modifications the observed in primary way.

   Related Questions in Physics

  • Q : Explain the cause of Brownian motion

    Briefly define or explain the cause of Brownian motion?

  • Q : Bragg's law Bragg's law - Whenever a

    Bragg's law - Whenever a beam of x-rays strikes a crystal surface in which the layers of ions or atoms are often separated, the maximum intensity of the reflected ray takes place when the complement of the angle of incidence, theta (θ), the wave

  • Q : Define Planck constant Planck constant

    Planck constant: h: The basic constant equivalent to the ratio of the energy of a quantum of energy to its frequency. This is the quantum of action. This has the value 6.626 196 x 10-34 J s.

  • Q : Write a short note on diffuse reflection

    Write a short note on diffuse reflection?

  • Q : What is Dulong-Petit law Dulong-Petit

    Dulong-Petit law (P. Dulong, A.T. Petit; 1819): The molar heat capacity is around equivalent to the three times the ideal gas constant: C = 3 R

  • Q : Define Noether theorem Noether theorem

    Noether theorem (Noether): A theorem that explains that symmetries are what gives rise to conserved quantities. For example, the translational symmetry (that is the fact that the laws of physics work the same in all positions) gives r

  • Q : Define Eddington limit Eddington limit

    Eddington limit (Sir A. Eddington): The hypothetical limit at which the photon pressure would surpass the gravitational attraction of a light-emitting body. That is, a body emanating radiation at bigger than the Eddington limit would

  • Q : Explain Faradays law Faraday's law (M.

    Faraday's law (M. Faraday): The line integral of the electric field about a closed curve is proportional to the instant time rate of change of the magnetic flux via a surface bounded by that closed curve; in the differential form,

  • Q : Define Tesla or SI unit of the magnetic

    Tesla: T (after N. Tesla, 1870-1943): The derived SI unit of the magnetic flux density stated as the magnetic flux density of a magnetic flux of 1 Wb via an area of 1 m2; it therefore has units of Wb/m2.

  • Q : Define Compton Effect Compton Effect

    Compton Effect (A.H. Compton; 1923): The effect which describes those photons (that is the quantum of electromagnetic radiation) has momentum. The photon fired at a stationary particle, like an electron, will communicate momentum to t