--%>

Explain Schroedingers cat

Schroedinger's cat (E. Schroedinger; 1935): A thought experiment designed to exemplify the counterintuitive and strange ideas of reality that come all along with the quantum mechanics.

A cat is sealed within a closed box; the cat has plenty air, food, and water to stay alive in an extended period. This box is designed in such a way that no information (that is, sight, sound, and so on) can pass into or out of the box -- the cat is completely cut off from your observations. Also within the box with the poor kitty (it seems that Schroedinger was not too fond of felines) is a phial of a gaseous poison, and an automatic mallet to break it, flooding the box and murder the cat. The mallet is hooked up to a Geiger counter; this counter is observing a radioactive sample and is designed to trigger the mallet killing the cat -- must a radioactive decay be noticed. The sample is selected so that after, say, 1 hr., there stands a 50-50 chance of a decay happening.

The question is what is the state of the cat after that 1 hr has gone? The intuitive reply is that the cat is either alive or dead; however you do not know which awaiting you look. However it is one of them. The quantum mechanics, on other hand, states that the wave-function explaining the cat is in a superposition of states: the cat is, however, 50% alive and 50% dead; it is both. Not until one looks and "collapses the wave-function" is the Universe forced to prefer either a live cat or a dead cat and not somewhat in between.

This point out that observation also appears to be a significant portion of the scientific procedure quite a departure from the extremely objective, deterministic way things employed to be with Newton.

   Related Questions in Physics

  • Q : What do you understand by the term

    What do you understand by the term Ambient Reflection? And also write down its characteristic?

  • Q : Define Newton or SI unit of force

    Newton: N (after Sir I. Newton, 1642-1727): The derived SI unit of force, stated as the force needed to give a mass of 1 kg of an acceleration of 1 m/s2; it therefore has units of kg m/s2.

  • Q : What is Dulong-Petit law Dulong-Petit

    Dulong-Petit law (P. Dulong, A.T. Petit; 1819): The molar heat capacity is around equivalent to the three times the ideal gas constant: C = 3 R

  • Q : Define Trojan points Trojan points : L4

    Trojan points: L4 and L5 are the two dynamically stable Lagrange points (that is, beneath certain conditions).

  • Q : Plasma globe AD advantages and

    advantages and disadvantages of a plasma globe

  • Q : What is Hooke law Hooke's law (R.

    Hooke's law (R. Hooke): The stress exerted to any solid is proportional to the strain it generates within the elastic limit for that solid. The constant of that proportionality is the Young modulus of elasticity for that material.

  • Q : Candela Candela : The basic SI unit of

    Candela: The basic SI unit of luminous intensity stated as the luminous intensity in a given direction of a source which emits monochromatic photons of frequency 540 x 1012 Hz and encompasses a radiant intensity in the direction of 1/683 W/

  • Q : Law of Machines Describe briefly all

    Describe briefly all the Law of Machines?

  • Q : What is Standard quantum limit Standard

    Standard quantum limit: It is the limit obligatory on standard techniques of measurement by the uncertainty principle in quantum mechanics.

  • Q : Explain Rayleigh-Jeans law

    Rayleigh-Jeans law: For a blackbody at the thermodynamic temperature T, the radiance R over a range of frequencies between the nu and nu + dnu is specified by: R = 2 pi nu2 k T/c2.<