--%>

Explain the process of adsorption in solution.

The process of adsorption can occurs in solutions also. This implies that the solid surfaces can also adsorb solutes from solutions. Some clarifying examples are listed below:


(i) When an aqueous solution of ethanoic acid (CH3COOH) is shaken with charcoal. The concentration of acid in the solution is found to decrease because a part of acid is adsorbed by charcoal.

(ii) Litmus solution become colourless when it is shaken with charcoal which indicates that the dye of litmus solution is adsorbed by charcoal.

(iii) Mg(OH)2 is colorless but when it is precipitated in the presence of magneton reagent (a bluish dye) the precipitate acquire blue colour due to adsorption of dye on their surface.

It has also been observed that if we have a solution containing more than one solutes, then the solid adsorbents can adsorb certain solutes in preference to other solutes and solvents. The property is made use of in removing colouring matters from solutions of organic substances. For example, raw sugar solution is decolourised by animal charcoal.

Factors affecting adsorption from solutions

Adsorption from solutions by the solid adsorbents depends on the following factors.

(i) Nature of adsorbent and adsorbate

(ii) Temperature: the extent of adsorption, in general, decreases with rise in the surface area of adsorbent.

(iii) Surface area: the extent adsorption increase with the increase in the surface area of adsorbent.

(iv) Concentration: the effect of concentration on the extent of adsorption isotherm similar to Freundlich adsorption isotherm. The relationship between mass of solute adsorbed per gram (x/m) is given by the following relations:
                                                 
x/m = kC1/n              (n > 1)

Taking logarithm, equation becomes
                                               
log x/m = log k + (1/n) log C

A graph between log x/m and log C is a straight line, similar to graph.

Experimental verification of equation can be done by taking equal volume of acetic acid solutions of different concentrations in four different bottles fitted with stoppers. The contents should be well mixed. The concentration of acetic acid is found in each bottle. This concentration refers to equilibrium concentration (c). The difference of original concentration and equilibrium concentration gives the value of amount of acetic acid adsorbed by charcoal (x)log (x/m) values of different plotted against C

   Related Questions in Chemistry

  • Q : Polymers comparison of biodegradable

    comparison of biodegradable and non-biodegradable polymers

  • Q : Degree of dissociation The degree of

    The degree of dissociation of Ca(No3)2 in a dilute aqueous solution containing 14g of the salt per 200g of water 100oc is 70 percent. If the vapor pressure of water at 100oc is 760 cm. Calculate the vapor pr

  • Q : Dipole attractions for london dispersion

    Illustrate how are dipole attractions London dispersion forces and hydrogen bonding similar?

  • Q : Determining maximum Osmotic pressure

    Which of the following would have the maximum osmotic pressure (assume that all salts are 90% dissociated): (a) Decimolar aluminium sulphate (b) Decimolar barium chloride (c) Decimolar sodium sulphate (d) A solution obtained by mix

  • Q : Describe various systems for

    Common system According to this system, the individual members are named according to alkyl groups att

  • Q : Chem Explain how dissolving the Group

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.

  • Q : What are biodegradable polymers?

      These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biod

  • Q : M ive me answer of this question. When

    ive me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the: (a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change

  • Q : Explain the preparation of phenols. The

    The methods used for the preparation of phenols are given below:    From aryl sulphonic acids

  • Q : Normality of sulphuric acid Help me to

    Help me to go through this problem. Normality of sulphuric acid is: (a) 2N (b) 4N (c) N/2 (d) N/4