Explain Second Order Rate Equations.

Integration of the second order rate equations also produces convenient expressions for dealing with concentration time results.

A reaction is classified as second order if the rate of the reaction is proportional to the square of the concentration of one of the reagents or to the product of the concentrations of two species of the reagents. The second situation leads to the same equations as the first if the two reactants are used up at the same rate and if their initial concentrations are equal.

Rate = kc2. For these situations, the rate equation is

-dc/dt = kc2, where c is the concentration of the single reagent or one of the two reagents. Again the kinetic data are usually compared with the integrated form of the equation. One has

- 966_second order rate equation.png dc/c2 = k 283_second order rate equation1.png dt

And

1/c - 1/c0 = kt

A reaction of the types considered so far is therefore second order if a plot of 1/c versus t gives a straight line. The slope of the straight line is equal to the rate constant. Equation shows, this constant involves the units of concentrations, differing in this respect from the first order rate constant that involves only the units of time. Furthermore, the time for the concentration to drop to half its initial value is deduced from equation to be

t1/2 = 1/kc
0

The half life therefore depends on the initial concentration and is not a convenient way of expressing the rate constant of second order reactions.

Example: use of second order half life expression to verify that the rates used which were obtained for periods of reaction up to about 30 min, were indeed "initial rates".

Solution: 
although the concentrations of the two reactants, iodine ions and peroxydisulfate ions, reported are somewhat different we can use a representative value of 0.01 mol L-1. Then with k = 0.36 mol-1 L min-1, gives 

t1/2 = 1/(0.36 mol-1 L min-1) (0.01 mol L-1)

= 300 min

About half the reactants would be used up in 300 min. since the reaction was studied only in times up to about 10 min, the initial concentration could not have changed appreciably. The method of initial rates was applicable.

Rate = kcA cB: instead of working with the concentration of the reacting species, as was done with previous equation, it is more convenient to develop the rate equation by introducing a term for the amount of reaction that has occurred at time t. the overall reaction might, for example, be of the form

A + B 1187_First order reactions1.png products

If it is inconvenient to arrange to have the initial concentrations of A and B equal the analysis that led to equation cannot be used, but the kinetic data can be treated in terms of the following quantities:

a = initial concentration of A

b = initial concentration of B

X = decrease in A or B at time t = amount of product at time t

a - x = concentration of A at time t

b - x = concentration of B at time t

The differential second order rate equation would then be 

dx/dt = k[A][B] = k(a - x)(b - x)

The integration can be performed by using partial fractions. Thus

dx/(a - x)(b - x) = k dt


leads to the integral 

1/a - b 353_second order rate equation2.png (- dx/a - x + dx/b - x) = k 283_second order rate equation1.png dt


On integration this gives

1/a - b [In (a - x) - In (b - x)]0x = kt

Insertion of the limits and rearrangement give, finally,

1/a - b In b(a - x)/a(b - x) = kt

   Related Questions in Chemistry

  • Q : Ions in solution The accuracy of your

    The accuracy of your written English will be taken into account in marking. 1.    (a)   Identify the spectator ions in the following equation                    &nb

  • Q : Laws of Chemical Combination Laws of

    Laws of Chemical Combination- In order to understand the composition of the compounds, it is necessary to have a theory which accounts for both qualitative and quantitative observations during chem

  • Q : Solution problem What is the correct

    What is the correct answer. To made a solution of concentration of 0.03 g/ml of AgNO3, what quantity of AgNO3 must be added in 60 ml of solution: (a) 1.8  (b) 0.8  (c) 0.18  (d) None of these

  • Q : What do you mean by the term medicine

    What do you mean by the term medicine dropper? Explain briefly?

  • Q : Question based on lowest vapour pressure

    Give me answer of this question. Among the following substances the lowest vapour pressure is exerted by: (a) Water (b) Mercury (c) Kerosene (d) Rectified spirit

  • Q : Relative lowering of vapour pressure

    Which of the following solutions will have a lower vapour pressure and why? a) A 5% aqueous solution of cane sugar. b) A 5% aqueous solution of urea.

  • Q : Means of molality Give me answer of

    Give me answer of this question. The number of moles of solute per kg of a solvent is called its: (a) Molarity (b) Normality (c) Molar fraction (d) Molality

  • Q : Vitamines 7 enzyme cofactor what is the

    what is the relationship between vitamins and enzyme cofactors

  • Q : Solubility of a gas The solubility of a

    The solubility of a gas in water depends on: (a) Nature of the gas (b) Temperature (c) Pressure of the gas (d) All of the above. Can someone help me in finding out the right answer.

  • Q : Vapour pressure of methanol in water

    Give me answer of this question. An aqueous solution of methanol in water has vapour pressure: (a) Equal to that of water (b) Equal to that of methanol (c) More than that of water (d) Less than that of water

©TutorsGlobe All rights reserved 2022-2023.