--%>

Theory of one dimensional motion

For motion in one dimension, the distribution of the molecules over quantum states, speeds, and energies can be deduced.

Here we show that the energy of a macroscopic gas sample can be described on the basis of our knowledge of the quantum states allowed to the molecules of the gas and the distribution expressed by the Boltzmann expression. We begin by studying the translational motion in one dimension of a collection of molecules. You will see how the procedure is fascillated by the partition function.

Partition function: the molecules of a gas that move along one dimension can have, any of the energies given by

1676_one dimensional motion.png 

For gas samples we can assume a cubic container and express a as V1/3, where V is the volume of the sample.

The partition function for one-dimensional translational motion can be developed by recognizing that
    
The translational energy of the lowest-energy state is small compared with the energies of most of the populated states and can be set equal to zero.
    
The translational-energy spacing between successive energy levels is small compared with the range of energies of the populated states.
    
The degeneracy of each energy level is unity.

On this basis, the partition function summation over the translational energies can be replaced by integration, and the partition function is expressed as

83_one dimensional motion1.png 

The integral is one of the definite integrals dealt by using the general result shown there, we obtain

1990_one dimensional motion2.png 

Example: calculate the partition function for the translational motion of N2 molecules free to move along one dimension of a 1-L cubic container. The temperature is 25°C.

Solution: the translational-energy factor h2/(8ma2) can be calculated conveniently from the expression of this equation. The mass of M of 1 mol of N2 molecules is 0.02801 kg, and V = 1 L = 10-3 m3. Thus
2163_one dimensional motion3.png 

962_one dimensional motion4.png 

= 1.180 × 10-40 J

The value of kT, to which the energy spacing factor is compared, is

kT = (1.3807 × 10-23 J K-1) (298.15 K) = 4.116 × 10-21 J

The partition function is calculated as

1331_one dimensional motion5.png 

this large partition function value indicates that very many states are available to the molecules. This result, in the calculations, from the smallness of h2/(8ma2compared to kT.

Average energy: the one dimensional translational energy of 1 mol of gas molecules can now be deduced. The general thermal-energy expression is

864_one dimensional motion6.png 

The partition function for one-dimensional translational motion gives
1661_one dimensional motion7.png 

substitution of the equation expressions in the equation for U - U0 gives

U - U0 = ½ RT

We have come by this long route to the result that we obtained from the simple classical kinetic-molecular theory. The translational energy per degree of freedom is ½ RT

   Related Questions in Chemistry

  • Q : Question associated to vapour pressure

    Choose the right answer from following. The vapour pressure lowering caused by the addition of 100 g of sucrose(molecular mass = 342) to 1000 g of water if the vapour pressure of pure water at 25degree C is 23.8 mm Hg: (a)1.25 mm Hg (b) 0.125 mm Hg (c) 1.15 mm H

  • Q : Which is polar HCl or HF Which one is

    Which one is polar HCl or HF?

  • Q : Question based on mole concept Help me

    Help me to solve this Question. The number of moles of SO2Cl2 in 13.5 gm is in is : (a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Electron Spin The total angular

    The total angular momentum of an atom includes an electron spin component as well as an orbital component.The orbital motion of each electron of an atom contributes to the angular momentum of the atom, as described earlier. An additional

  • Q : Problem on preparing of a solution Give

    Give me answer of this question. How many grams of CH3OH should be added to water to prepare 150 solution of@M CH3 OH: (a) 9.6 (b) 2.4 (c) 9.6x 103 (d) 2.4 x103

  • Q : Net charge of a non-ionized atom

    Describe the net charge of a non-ionized atom?

  • Q : Reason for medications contain hcl What

    What is the reason behind this that some medications contain hcl?

  • Q : Vapour pressure of water Give me answer

    Give me answer of this question. 5cm3 of acetone is added to 100cm3 of water, the vapour pressure of water over the solution: (a) It will be equal to the vapour pressure of pure water (b) It will be less than the vapour pressure of pure water

  • Q : Calculating molarity of a solution

    Select the right answer of the question .The molarity of a 0.2 N N2Co3 solution will be: (a) 0.05 M (b) 0.2 M (c) 0.1 M (d)0.4 M