--%>

Theory of one dimensional motion

For motion in one dimension, the distribution of the molecules over quantum states, speeds, and energies can be deduced.

Here we show that the energy of a macroscopic gas sample can be described on the basis of our knowledge of the quantum states allowed to the molecules of the gas and the distribution expressed by the Boltzmann expression. We begin by studying the translational motion in one dimension of a collection of molecules. You will see how the procedure is fascillated by the partition function.

Partition function: the molecules of a gas that move along one dimension can have, any of the energies given by

1676_one dimensional motion.png 

For gas samples we can assume a cubic container and express a as V1/3, where V is the volume of the sample.

The partition function for one-dimensional translational motion can be developed by recognizing that
    
The translational energy of the lowest-energy state is small compared with the energies of most of the populated states and can be set equal to zero.
    
The translational-energy spacing between successive energy levels is small compared with the range of energies of the populated states.
    
The degeneracy of each energy level is unity.

On this basis, the partition function summation over the translational energies can be replaced by integration, and the partition function is expressed as

83_one dimensional motion1.png 

The integral is one of the definite integrals dealt by using the general result shown there, we obtain

1990_one dimensional motion2.png 

Example: calculate the partition function for the translational motion of N2 molecules free to move along one dimension of a 1-L cubic container. The temperature is 25°C.

Solution: the translational-energy factor h2/(8ma2) can be calculated conveniently from the expression of this equation. The mass of M of 1 mol of N2 molecules is 0.02801 kg, and V = 1 L = 10-3 m3. Thus
2163_one dimensional motion3.png 

962_one dimensional motion4.png 

= 1.180 × 10-40 J

The value of kT, to which the energy spacing factor is compared, is

kT = (1.3807 × 10-23 J K-1) (298.15 K) = 4.116 × 10-21 J

The partition function is calculated as

1331_one dimensional motion5.png 

this large partition function value indicates that very many states are available to the molecules. This result, in the calculations, from the smallness of h2/(8ma2compared to kT.

Average energy: the one dimensional translational energy of 1 mol of gas molecules can now be deduced. The general thermal-energy expression is

864_one dimensional motion6.png 

The partition function for one-dimensional translational motion gives
1661_one dimensional motion7.png 

substitution of the equation expressions in the equation for U - U0 gives

U - U0 = ½ RT

We have come by this long route to the result that we obtained from the simple classical kinetic-molecular theory. The translational energy per degree of freedom is ½ RT

   Related Questions in Chemistry

  • Q : Mole fraction of water Give me answer

    Give me answer of this question. A solution contains 25%H2O 25%C2H5OH , and 50% CH3 COOH by mass. The mole fraction of H2O would be: (a) 0.25 (b) 2.5 (c) 0.503 (d) 5.03.

  • Q : Amines arrange in decreasing order of

    arrange in decreasing order of basicity pi pyridine,pyridine,pyrrole, morphine

  • Q : Death cap musrooms the death cap

    the death cap mushroom based on your knowledge of the biochemistry of dna and rna

  • Q : Law of vapour pressure Select the right

    Select the right answer of the question. "The relative lowering of the vapour pressure is equal to the mole fraction of the solute." This law is called: (a) Henry's law (b) Raoult's law (c) Ostwald's law (d) Arrhenius's law

  • Q : What are lattices and unit cells? The

    The repeating, atomic level structure of a crystal can be represented by a lattice and by the repeating unit of the lattice, the unit cell.It was apparent very early in the study of crystals that the shapes of crystals stem from an ordered array of smaller

  • Q : How reactive is Trimethylindium towards

    Illustrate the reason, how reactive is Trimethylindium towards oxygen and water?

  • Q : Explain vapour pressure of liquid

    Liquid solutions are obtained when the solvent is liquid. The solute can be a gas, liquid or a solid. In this section we will discuss the liquid solutions containing solid or liquid solutes. In such solutions the solute may or may not be volatile. We shall limit our d

  • Q : Question on seminormal solution Provide

    Provide solution of this question. The weight of sodium carbonate required to prepare 500 ml of a seminormal solution is: (a) 13.25 g (b) 26.5 g (c) 53 g (d) 6.125 g

  • Q : Mole fraction of hydrogen Give me

    Give me answer of this question. In a mixture of 1 gm H2 and 8 gm O2 , the mole fraction of hydrogen is: (a) 0.667 (b) 0.5 (c) 0.33 (d) None of these

  • Q : What do you mean by the term hydra What

    What do you mean by the term hydra? Briefly define it.