--%>

Explain Factorisation by Fermats method

Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares. This is because if n = a2 - b2, then we have immediately

n = a2 - b2 = (a+b)(a - b);

and so we have found two factors, a+b and a - b, of n.

It is possible here that a - b might equal 1, in which case we will only have found the trivial factorisation n = n x 1, but we can arrange matters so that this will only happen if n has no other factorisation - i.e., is prime.

At first glance, it may seem over-optimistic to hope that an expression for n as the di fference of two squares will exist.

But assume that n is odd, which we can always do if we are trying to factorise n. Then if n = uv and we put

a = 1/2(u+v) and b = 1/2(u - v);

we have n = a2 - b2 (note that a and b are both integers if n is odd), so that a representation of n as the difference of two squares does exist. (In fact, it is easy to see that the above formulae define a one-to-one correspondence between representations of n as the di erence of two squares and as the product of two factors - exercise.)

   Related Questions in Mathematics

  • Q : Ordinary Differential Equation or ODE

    What is an Ordinary Differential Equation (ODE)?

  • Q : Properties of a group How can we say

    How can we say that the pair (G, o) is a group. Explain the properties which proof it.

  • Q : Problem on Prime theory Suppose that p

    Suppose that p and q are different primes and n = pq. (i) Express p + q in terms of Ø(n) and n. (ii) Express p - q in terms of p + q and n. (iii) Expl

  • Q : What is Big-O hierarchy The big-O

    The big-O hierarchy: A few basic facts about the big-O behaviour of some familiar functions are very important. Let p(n) be a polynomial in n (of any degree). Then logbn is O(p(n)) and p(n) is O(an<

  • Q : Abstract Algebra let a, b, c, d be

    let a, b, c, d be integers. Prove the following statements: (a) if a|b and b|c. (b) if a|b and ac|bd. (c) if d|a and d|b then d|(xa+yb) for any x, y EZ

  • Q : Problem on budgeted cash collections

    XYZ Company collects 20% of a month's sales in the month of sale, 70% in the month following sale, and 5% in the second month following sale. The remainder is not collectible. Budgeted sales for the subsequent four months are:     

  • Q : Explain Factorisation by Fermats method

    Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares.

  • Q : How to get calculus homework done from

    How to get calculus homework done from tutor

  • Q : Who firstly discovered mathematical

    Who firstly discovered mathematical theory for random walks, that rediscovered later by Einstein?

  • Q : Row-echelon matrix Determine into which

    Determine into which of the following 3 kinds (A), (B) and (C) the matrices (a) to (e) beneath can be categorized:       Type (A): The matrix is in both reduced row-echelon form and row-echelon form. Type (B): The matrix