--%>

Explain Factorisation by Fermats method

Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares. This is because if n = a2 - b2, then we have immediately

n = a2 - b2 = (a+b)(a - b);

and so we have found two factors, a+b and a - b, of n.

It is possible here that a - b might equal 1, in which case we will only have found the trivial factorisation n = n x 1, but we can arrange matters so that this will only happen if n has no other factorisation - i.e., is prime.

At first glance, it may seem over-optimistic to hope that an expression for n as the di fference of two squares will exist.

But assume that n is odd, which we can always do if we are trying to factorise n. Then if n = uv and we put

a = 1/2(u+v) and b = 1/2(u - v);

we have n = a2 - b2 (note that a and b are both integers if n is odd), so that a representation of n as the difference of two squares does exist. (In fact, it is easy to see that the above formulae define a one-to-one correspondence between representations of n as the di erence of two squares and as the product of two factors - exercise.)

   Related Questions in Mathematics

  • Q : Linear programming model of a Cabinet

    A cabinet company produces cabinets used in mobile and motor homes. Cabinets produced for motor homes are smaller and made from less expensive materials than those for mobile homes. The home office in Dayton Ohio has just distributed to its individual manufacturing ce

  • Q : Who firstly use the finite-difference

    Who firstly use the finite-difference method?

  • Q : Profit-loss based problems A leather

    A leather wholesaler supplies leather to shoe companies. The manufacturing quantity requirements of leather differ depending upon the amount of leather ordered by the shoe companies to him. Due to the volatility in orders, he is unable to precisely predict what will b

  • Q : Examples of groups Examples of groups:

    Examples of groups: We now start to survey a wide range of examples of groups (labelled by (A), (B), (C), . . . ). Most of these come from number theory. In all cases, the group axioms should be checked. This is easy for almost all of the examples, an

  • Q : Row-echelon matrix Determine into which

    Determine into which of the following 3 kinds (A), (B) and (C) the matrices (a) to (e) beneath can be categorized:       Type (A): The matrix is in both reduced row-echelon form and row-echelon form. Type (B): The matrix

  • Q : Numerical solution of PDE i want you to

    i want you to solve this assignment. this consist of two parts theoretical and coding. the code has to be created by you. no modified or copying code. you have to mention the exact solution and the proportion error. also you have to explain the sketch that you get from the code. these information

  • Q : Theorem-Group is unique and has unique

    Let (G; o) be a group. Then the identity of the group is unique and each element of the group has a unique inverse.In this proof, we will argue completely formally, including all the parentheses and all the occurrences of the group operation o. As we proce

  • Q : Explain Black–Scholes model Explain

    Explain Black–Scholes model.

  • Q : Nonlinear integer programming problem

    Explain Nonlinear integer programming problem with an example ?

  • Q : Explain the work and model proposed by

    Explain the work and model proposed by Richardson.