--%>

Explain Factorisation by Fermats method

Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares. This is because if n = a2 - b2, then we have immediately

n = a2 - b2 = (a+b)(a - b);

and so we have found two factors, a+b and a - b, of n.

It is possible here that a - b might equal 1, in which case we will only have found the trivial factorisation n = n x 1, but we can arrange matters so that this will only happen if n has no other factorisation - i.e., is prime.

At first glance, it may seem over-optimistic to hope that an expression for n as the di fference of two squares will exist.

But assume that n is odd, which we can always do if we are trying to factorise n. Then if n = uv and we put

a = 1/2(u+v) and b = 1/2(u - v);

we have n = a2 - b2 (note that a and b are both integers if n is odd), so that a representation of n as the difference of two squares does exist. (In fact, it is easy to see that the above formulae define a one-to-one correspondence between representations of n as the di erence of two squares and as the product of two factors - exercise.)

   Related Questions in Mathematics

  • Q : Formal logic2 It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Define Big-O notation Big-O notation :

    Big-O notation: If f(n) and g(n) are functions of a natural number n, we write f(n) is O(g(n)) and we say f is big-O of g if there is a constant C (independent of n) such that f

  • Q : Who derived the Black–Scholes Equation

    Who derived the Black–Scholes Equation?

  • Q : Mathematical and Theoretical Biology

    Mathematical and theoretical biology is an interdisciplinary scientific research field with a range of applications in the fields of biology, biotechnology, and medicine. The field may be referred to as mathematical biology or biomathematics to stress the mathematical

  • Q : How do it? integral e^(-t)*e^(tz) t

    integral e^(-t)*e^(tz) t between 0 and infinity for Re(z)<1

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T

  • Q : Set Theory & Model of a Boolean Algebra

    II. Prove that Set Theory is a Model of a Boolean Algebra The three Boolean operations of Set Theory are the three set operations of union (U), intersection (upside down U), and complement ~.  Addition is set

  • Q : Problem on inventory merchandise AB

    AB Department Store expects to generate the following sales figures for the next three months:                            

  • Q : Theorem-G satis es the right and left

    Let G be a group. (i) G satis es the right and left cancellation laws; that is, if a; b; x ≡ G, then ax = bx and xa = xb each imply that a = b. (ii) If g ≡ G, then (g-1)

  • Q : Examples of groups Examples of groups:

    Examples of groups: We now start to survey a wide range of examples of groups (labelled by (A), (B), (C), . . . ). Most of these come from number theory. In all cases, the group axioms should be checked. This is easy for almost all of the examples, an