--%>

Electron Spin

The total angular momentum of an atom includes an electron spin component as well as an orbital component.

The orbital motion of each electron of an atom contributes to the angular momentum of the atom, as described earlier. An additional angular momentum contribution comes from the “spin of the electrons.”

The direct experimental demonstration of an electron feature that is described as spin angular momentum was given by the atomic beam studies of O. Stern and W. Gerlach. In the original experiments, a beam of silver atoms was passed through a magnetic field. The result was a splitting of the atom into two components. Thus, when a directional field is composed, two different states of silver atoms can be recognized.

The lowest energy electronic state of silver atoms consists of inner shells of electrons and a single outer shell electron in atom in an s orbital. No additional states should be developed when a directional field is applied to this spherically symmetric, zero angular momentum atom. The Stern-Gerlach results supported the idea that the silver atoms have an angular momentum of ½ h/ (2∏), or 1/2 h, which results from the intrinsic angular momentum of the electron. The magnetic field distinguishes those atoms with a spin angular momentum directed with and opposed to the field. If the electron spins quantum number s has a value of 1/2, jection of the spin angular momentum along an imposed direction is given by m2, h, where m2 = +1/2 or – ½.

In describing the electronic makeup of atoms, we use angular momentum to characterize the atomic states. From the above equations the orbital angular momentum contribution of an electron is √l (l + 1) h, where l = 0, 1, 2 …  now there is, in addition, an electronic spin angular momentum contributions are used  to describe the states of many electron atoms.

   Related Questions in Chemistry

  • Q : Why acetic has less conductivity than

    Illustrate the reason, why acetic has less conductivity than Hcl?

  • Q : Define Bond Energies - Bond Charges

    Energy changes in some chemical reactions can be used to deduce the energies of chemical bonds. Our understanding of the molecular basis of thermodynamic properties is extended when we ask why the enthalpy change for a reaction is what it is. We deduce,

  • Q : What are isotonic and hypotonic

    The two solutions which are having equivalent osmotic pressure are called isotonic solutions. The isotonic solutions at the same temperature also have same molar concentration. If we have solutions having different osmotic pressures then the solution having different

  • Q : Question based on vapour pressure and

    Benzene and toluene form nearly ideal solutions. At 20°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The parial vapour pressure of benzene at 20°C for a solution containing 78g of benzene and 46g of toluene in torr is: (a) 50 (b)

  • Q : Explain Vapour Pressure Composition A

    A pressure composition diagram for a liquid vapor system can be used to show the composition of the liquid and equilibrium vapor.Vapor equilibrium data are useful in the study of distillations. It is of value to have diagrams showing not only the vapor pre

  • Q : Question on colligative property Choose

    Choose the right answer from following. Which of the following is a colligative property: (a) Osmotic pressure (b) Boiling point (c) Vapour pressure (d) Freezing point

  • Q : Vapour pressure of volatile substance

    Provide solution of this question. According to Raoult's law the relative lowering of vapour pressure of a solution of volatile substance is equal to: (a) Mole fraction of the solvent (b) Mole fraction of the solute (c) Weight percentage of a solute (d) Weight perc

  • Q : Problem on partial pressure i) Show

    i) Show that the equilibrium constant Kp for the reaction CaCo3(s) ↔ CaO(s) +CO2(g)is about unity (i.e. = 1.0) at 895 °C.ii) If two grams of calcium carbonate are pl

  • Q : Molecular crystals Among the below

    Among the below shown which crystal will be soft and have low melting point: (a) Covalent  (b) Ionic  (c) Metallic  (d) MolecularAnswer: (d) Molecular crystals are soft and have low melting point.

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl