--%>

Electron Spin

The total angular momentum of an atom includes an electron spin component as well as an orbital component.

The orbital motion of each electron of an atom contributes to the angular momentum of the atom, as described earlier. An additional angular momentum contribution comes from the “spin of the electrons.”

The direct experimental demonstration of an electron feature that is described as spin angular momentum was given by the atomic beam studies of O. Stern and W. Gerlach. In the original experiments, a beam of silver atoms was passed through a magnetic field. The result was a splitting of the atom into two components. Thus, when a directional field is composed, two different states of silver atoms can be recognized.

The lowest energy electronic state of silver atoms consists of inner shells of electrons and a single outer shell electron in atom in an s orbital. No additional states should be developed when a directional field is applied to this spherically symmetric, zero angular momentum atom. The Stern-Gerlach results supported the idea that the silver atoms have an angular momentum of ½ h/ (2∏), or 1/2 h, which results from the intrinsic angular momentum of the electron. The magnetic field distinguishes those atoms with a spin angular momentum directed with and opposed to the field. If the electron spins quantum number s has a value of 1/2, jection of the spin angular momentum along an imposed direction is given by m2, h, where m2 = +1/2 or – ½.

In describing the electronic makeup of atoms, we use angular momentum to characterize the atomic states. From the above equations the orbital angular momentum contribution of an electron is √l (l + 1) h, where l = 0, 1, 2 …  now there is, in addition, an electronic spin angular momentum contributions are used  to describe the states of many electron atoms.

   Related Questions in Chemistry

  • Q : Problem on partial pressure i) Show

    i) Show that the equilibrium constant Kp for the reaction CaCo3(s) ↔ CaO(s) +CO2(g)is about unity (i.e. = 1.0) at 895 °C.ii) If two grams of calcium carbonate are pl

  • Q : Finding Normality Can someone please

    Can someone please help me in getting through this problem. Concentrated H2SO4 has a density of 1.98 gm/ml and is 98% H2SO4 by weight. The normality is: (a) 2 N  (b) 19.8 N  (c) 39.6 N  (d) 98

  • Q : Concentration of Calcium carbonate Help

    Help me to go through this problem. 1000 gms aqueous solution of CaCO3 contains 10 gms of carbonate. Concentration of the solution is : (a)10 ppm (b)100 ppm (c)1000 ppm (d)10000 ppm

  • Q : Molarity of Nacl solution When 5.85 g

    When 5.85 g of NaCl (having molecular weight 58.5) is dissolved in water and the solution is prepared to 0.5 litres, the molarity of the solution is: (i) 0.2 (ii) 0.4 (iii) 1.0 (iv) 0.1

  • Q : Iso-electronic species Which ion has

    Which ion has the lowest radius from the following ions(a) Na+  (b) Mg2+  (c) Al3+  (d) Si4+ Answer: (d) All are the iso-electronic species but Si

  • Q : Acid value definition The acid value

    The acid value definition is the number milligrams of KOH needed to neutralize the acid present in one gram oil and fats however why not employ NaOH for the neutralization?

  • Q : Formula of diesel Write a short note on

    Write a short note on the formula of diesel, petrol and also CNG?

  • Q : What is depression in freezing point?

    Freezing point of a substance is the temperature at which solid and liquid phases of the substance coexist. It is defined as the temperature at which its solid and liquid phases have the same vapour pressure. The freezing point o

  • Q : Explain methods for industrial

    The important methods for the preparation of alcohol on large-scale are given below:    

  • Q : Soluation of Ideal Gas Law problems

    Explain the method, how do you solve Ideal Gas Law problems?