--%>

Electron Spin

The total angular momentum of an atom includes an electron spin component as well as an orbital component.

The orbital motion of each electron of an atom contributes to the angular momentum of the atom, as described earlier. An additional angular momentum contribution comes from the “spin of the electrons.”

The direct experimental demonstration of an electron feature that is described as spin angular momentum was given by the atomic beam studies of O. Stern and W. Gerlach. In the original experiments, a beam of silver atoms was passed through a magnetic field. The result was a splitting of the atom into two components. Thus, when a directional field is composed, two different states of silver atoms can be recognized.

The lowest energy electronic state of silver atoms consists of inner shells of electrons and a single outer shell electron in atom in an s orbital. No additional states should be developed when a directional field is applied to this spherically symmetric, zero angular momentum atom. The Stern-Gerlach results supported the idea that the silver atoms have an angular momentum of ½ h/ (2∏), or 1/2 h, which results from the intrinsic angular momentum of the electron. The magnetic field distinguishes those atoms with a spin angular momentum directed with and opposed to the field. If the electron spins quantum number s has a value of 1/2, jection of the spin angular momentum along an imposed direction is given by m2, h, where m2 = +1/2 or – ½.

In describing the electronic makeup of atoms, we use angular momentum to characterize the atomic states. From the above equations the orbital angular momentum contribution of an electron is √l (l + 1) h, where l = 0, 1, 2 …  now there is, in addition, an electronic spin angular momentum contributions are used  to describe the states of many electron atoms.

   Related Questions in Chemistry

  • Q : What is chemisorption or chemical

    When the forces of attraction existing between adsorbate particles and adsorbent almost of the same strength as chemical bonds, the adsorption is called chemical adsorption. This type of adsorption is also known as chemisorptions. Since forces of attraction existing b

  • Q : PH of an Alkyl Halide Briefly state the

    Briefly state the pH of an Alkyl Halide?

  • Q : Determining maximum Osmotic pressure

    Which of the following would have the maximum osmotic pressure (assume that all salts are 90% dissociated): (a) Decimolar aluminium sulphate (b) Decimolar barium chloride (c) Decimolar sodium sulphate (d) A solution obtained by mix

  • Q : Ddd 4) The addition of S2- ion to

    4) The addition of S2- ion to Fe(OH)2(s). Explain why the addition of S2- ion to Cr(OH)3(s) does not result in the formation of Cr2S3(s).

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu

  • Q : Problem on decomposition reaction

    Nitrogen tetroxide (melting point: -11.2°C, normal boiling point 21.15°C) decomposes into nitrogen dioxide according to the following reaction: N2O4(g) ↔ 2 NO2(g)<

  • Q : Units of Measurement Unit of

      Unit of measurement- These are also some systems for units:      (1) 

  • Q : Film Mass Transport Sulfur trioxide

    Sulfur trioxide (SO3) is manufactured by the gas-phase oxidation of SO2 over a platinum catalyst: SO2 + ½ O2 à SO3 The catalyst is a non-porous ext

  • Q : Effect of addition of mercuric iodide

    Give me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the:(a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change

  • Q : Question based on relative lowering of

    Give me answer of this question. When a non-volatile solute is dissolved in a solvent, the relative lowering of vapour pressure is equal to: (a) Mole fraction of solute (b) Mole fraction of solvent (c) Concentration of the solute in grams per litre (d) Concentratio