--%>

Electron Spin

The total angular momentum of an atom includes an electron spin component as well as an orbital component.

The orbital motion of each electron of an atom contributes to the angular momentum of the atom, as described earlier. An additional angular momentum contribution comes from the “spin of the electrons.”

The direct experimental demonstration of an electron feature that is described as spin angular momentum was given by the atomic beam studies of O. Stern and W. Gerlach. In the original experiments, a beam of silver atoms was passed through a magnetic field. The result was a splitting of the atom into two components. Thus, when a directional field is composed, two different states of silver atoms can be recognized.

The lowest energy electronic state of silver atoms consists of inner shells of electrons and a single outer shell electron in atom in an s orbital. No additional states should be developed when a directional field is applied to this spherically symmetric, zero angular momentum atom. The Stern-Gerlach results supported the idea that the silver atoms have an angular momentum of ½ h/ (2∏), or 1/2 h, which results from the intrinsic angular momentum of the electron. The magnetic field distinguishes those atoms with a spin angular momentum directed with and opposed to the field. If the electron spins quantum number s has a value of 1/2, jection of the spin angular momentum along an imposed direction is given by m2, h, where m2 = +1/2 or – ½.

In describing the electronic makeup of atoms, we use angular momentum to characterize the atomic states. From the above equations the orbital angular momentum contribution of an electron is √l (l + 1) h, where l = 0, 1, 2 …  now there is, in addition, an electronic spin angular momentum contributions are used  to describe the states of many electron atoms.

   Related Questions in Chemistry

  • Q : Help 1) Chromium(III) hydroxide is

    1) Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer. 2) Explain how dissolving t

  • Q : Problem based on lowering in vapour

    Help me to solve this problem. An aqueous solution of glucose was prepared by dissolving 18 g of glucose in 90 g of water. The relative lowering in vapour pressure is: (a) 0.02 (b)1 (c) 20 (d)180

  • Q : Illustrate the Lewis Dot Structure

    Illustrate the Lewis Dot Structure for the CH4O.

  • Q : What are electromotive force in

    The main objective of this particular aspect of Physical Chemistry is to examine the relation between free energies and the mechanical energy of electromotive force of electrochemical cells. The ionic components of aqueous solutions can be treated on the basis of the

  • Q : Neutralization of benzoic acid Choose

    Choose the right answer from following. How many grams of NaOH will be required to neutralize 12.2 grams of benzoic acid : (a) 40gms (b) 4gms (c)16gms (d)12.2gms

  • Q : Adiabatic compression A lean natural

    A lean natural gas is available at 18oC and 65 bars and must be compressed for economical pipeline transportation. The gas is first adiabatically compressed to 200 bars and then isobarically (i.e. at constant pressure) cooled to 25°C. The gas, which is

  • Q : Molecular Properties Symmetry Molecular

    Molecular orbitals and molecular motions belong to certain symmetry species of the point group of the molecule.Examples of the special ways in which vectors or functions can be affected by symmetry operations are illustrated here. All wave functions soluti

  • Q : Problem on making solution Select the

    Select the right answer of the question. The weight of H2C2O42H2O required to prepare 500ml of 0.2N solution is : (a) 126g (b) 12.6g (c) 63g (d) 6.3g

  • Q : Solutions The normality of 10 lit.

    The normality of 10 lit. volume hydrogen peroxide is: (a) 0.176 (b) 3.52 (c) 1.78 (d) 0.88 (e)17.8

  • Q : Dependcy of colligative properties

    Colligative properties of a solution depends upon: (a) Nature of both solvent and solute (b) The relative number of solute and solvent particles (c) Nature of solute only (d) Nature of solvent only