Describe Thermodynamics Properties

The free energy property leads to convenient expressions for the volume and pressure dependence of internal energy, enthalpy and the heat capacities.

All the properties of a chemical system, a sample of a substance, or a mixture of substances have some fixed, definite values when the state of the system is set by the selection of, for example, a temperature and a pressure.

The properties that we have been with have the symbols V, U, H, S and G. these properties are all interrelated, as you know by thinking of the defining equations such as H = U + PV and G = H - TS.

Suppose the state of the system is changed. The values of the properties of the system change. These property changes must be interrelated.

An example of Maxwell's equations: the dependence of free energy on pressure and that on temperature are given by the partial derivatives,

(∂G/∂P)T = V and (∂G/∂T)P = -S

Since the free energy is a property, the change in free energy will be the same regardless of the order of differentiation with respect to pressure and temperature. We can write

[∂/∂P (∂G/∂T)P]T = [(∂/∂T) (∂G/∂P)T]P

With the equations for the derivatives of G with respect to T and P, this gives us 

(∂S/∂P)T = -(∂V/∂T)P

This derivative relation, who in itself is not at all revealing, is useful in leading us to other relations that give us unexpected insights. It is one of the expressions known as Maxwell's equations.

Pressure and volume dependence of U: for any process, the change in the energy dU of the system is related to the change in the energies of the thermal and mechanical surroundings by

dU = -dUtherm - dU
mech

For a process in which only the mechanical energy is involved, dUmech = P dV. For a reversible process dUtherm = -T dS. By considering this special process we arrive at the relation

dU = T dS - P dV

For a given change in S and V, there will be a particular change in U. thus although we arrived by considering a particular process, it is generally applicable.

Division of equation by dP followed by specification of constant temperature gives

(∂U/∂P)T = T(∂S/∂P)T - P(∂V/∂P)T

The pressure dependence of internal energy on volume can be obtained first writing the relation

(∂U/∂P)T = (VU/∂T)T - (∂V/∂P)T

The corresponding dependence of internal energy on volume can be obtained first writing the relation

(∂U/∂V)T = (∂U/∂P)T (∂P/∂V)T = -(∂V/∂T)P (∂P/∂V)T - P(∂V/∂P)T (∂P/∂V)T

= - T(∂V/∂T)T (∂P/∂V)T - P

The (∂V/∂T) P term can be expressed from dV = (∂V/∂T) P dT + (∂V/∂T)T dP by specifying constant volume, and rearranging to

(∂V/∂T)= - (∂V/∂P)T (∂P/∂T)V    

Now the equation for (∂U/∂V)T becomes

(∂U/∂V)T = T(∂P/∂T)V - P

Energy of an ideal gas

The internal energy U of a sample of an ideal gas depends on only the temperature, not on the pressure or volume of the sample. This ideal was justified by the kinetic molecular theory. We can show that it holds without stepping out of classical thermodynamics.

We can use conformity to the equation PV = nRT as a definition of ideal gas behaviour. If this relation is used to evaluate the terms, we arrive at

(∂U/∂P)T = 0 and (UV/∂V)T = 0

Thus, without any stipulation other than PV = nRT, arrive at the conclusion that the internal energy of an ideal gas depends on only the temperature.

   Related Questions in Chemistry

  • Q : Problem on decinormal Select the right

    Select the right answer of the question. How much water is required to dilute 10 ml of 10 N hydrochloric acid to make it exactly decinormal (0.1 N): (a) 990 ml (b) 1000 ml (c) 1010 ml (d) 100 ml

  • Q : Raoults law Give me answer of this

    Give me answer of this question. Provide solution of this question. Which one of the following is the expression of Raoult's law: (a) P-P1/P = n/n+N (b) P1-P/P = N/ N+n (c)P-P2/P1= N/ N-n (d) P1-P/P2= N-n/N

  • Q : Simulate the column in HYSYS The

    The objective of this work is to separate a binary mixture and to cool down the bottom product for storage. (Check table below to see which mixture you are asked to study). 100 kmol of feed containing 10 mol percent of the lighter component enters a continuous distillation column at the m

  • Q : Colligative property associated question

    Give me answer of this question. Which of the following is not a colligative property : (a)Optical activity (b)Elevation in boiling point (c)Osmotic pressure (d)Lowering of vapour pressure

  • Q : Solution density of water is 1g/mL.The

    density of water is 1g/mL.The concentration of water in mol/litre is

  • Q : Explain gels and its various categories.

    Certain sols have the property of setting to a semi-solid, jelly-like form by enclosing the entire amount of liquid within itself when they are present at high concentrations. This process is called gelation and colloidal systems with jelly-like appearance are known as gels. Some common examples

  • Q : Law of multiple proportions and Law of

    Describe the difference between law of multiple proportions and law of definite proportions?

  • Q : Reducible Representations The number of

    The number of times each irreducible representation occurs in a reducible representation can be calculated.Consider the C2v point group as described or Appendix C. you can see that (1) sum of

  • Q : Application of colligative properties

    Choose the right answer from following. Colligative properties are used for the determination of: (a) Molar Mass (b) Equivalent weight (c) Arrangement of molecules (d) Melting point and boiling point (d) Both (a) and (b)  

  • Q : Excel assignment I want it before 8 am

    I want it before 8 am tomorow please. I am just wondering how much is going to be ?

©TutorsGlobe All rights reserved 2022-2023.