--%>

Describe physical adsorption and its characteristics.

When the forces of attraction existing between adsorbate and adsorbent are van der Waal's forces, the adsorption is called physical adsorption. This type of adsorption is also known as physisorption or van der Waal's adsorption. Since the forces existing between adsorbent and adsorbate are very weak, therefore, this type of adsorption can be easily reversed by heating or by decreasing the pressure.

Characteristics of Physisorption

Some of the important characteristics of physisorption are as follows:

(i) Deficient of specificity: since the van der Waal forces are universal, a given surface of adsorbent does not show any preference for any specific gas. It can adsorb all the gases but to a different extent.

(ii) Reversible nature: physical adsorption of a gas by the solid is reversible and thus equilibrium is reached rapidly

Solid + Gas  1387_Physical adsorption.png  gas/solid + Heat

Thus, according to Le-chatelier's principle,

(a) Increase of pressure pushes the equilibrium in forward direction leading to more adsorption of gas and decrease of pressure cause desorption to occur.

(b) Since process is exothermic, therefore, lowering of temperature favours more adsorption and increase of temperature leads to desorption.

(iii) Surface area of adsorbent: the extent of adsorption increase with the increase of surface area of adsorbent. Thus, finely divided metals and rough surfaces are good adsorbents.

(iv) Nature of adsorbate: the amount of gas adsorbed by solid depends on nature of gas. In general, easily liquefiable gases (i.e gases with higher critical temperature) are readily as van der Waal forces are stronger near the critical temperature.

(v) Enthalpy of adsorption: the enthalpy of adsorption is low (20-40 kJ mol-1). This is because of weak nature of van der Waal's forces.

(vi) State of adsorbate: molecular state of adsorbate remains unaltered.

(vii) Activation energy: physical adsorption does not involve any chemical reaction and therefore, it requires very low activation energy.

   Related Questions in Chemistry

  • Q : Problem on bubble point The following

    The following mixture of hydrocarbons is obtained as one stream in a petroleum refinery.

    Q : Structure of a DNA molecule Elaborate

    Elaborate the structure of a DNA molecule?

  • Q : Question associated to vapour pressure

    Choose the right answer from following. The vapour pressure lowering caused by the addition of 100 g of sucrose(molecular mass = 342) to 1000 g of water if the vapour pressure of pure water at 25degree C is 23.8 mm Hg: (a)1.25 mm Hg (b) 0.125 mm Hg (c) 1.15 mm H

  • Q : Schrodinger equation with particle in a

    Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functi

  • Q : What are biodegradable polymers?

      These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biod

  • Q : Osmotic Pressure The O.P. (Osmotic

    The O.P. (Osmotic Pressure) of equimolar solution of Urea, BaCl2 and AlCl3, will be in the order:(a) AlCl3 > BaCl2 > Urea  (b) BaCl2 > AlCl3 > Urea  (c) Urea > BaCl2<

  • Q : Strength of the Hydrochloric acid

    Provide solution of this question. 1.0 gm of pure calcium carbonate was found to need 50 ml of dilute HCL for complete reaction. The strength of the HCL solution is specified by : (a) 4 N (b) 2 N (c) 0.4 N (d) 0.2 N

  • Q : Facts on evaporation Illustrate the 3

    Illustrate the 3 facts on evaporation?

  • Q : P block bif3 is ionic while other

    bif3 is ionic while other trihalides are covalent in nature

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu