What magnitude of the force f applied tangentially to the


The mechanism shown in the figure is used to raise a crate of supplies from a ship's hold. The crate has total mass 56 kg. A rope is wrapped around a wooden cylinder that turns on a metal axle. The cylinder has radius 0.20 m and a moment of inertia = 3.0 kg*m^2 about the axle. The crate is suspended from the free end of the rope. One end of the axle pivots on frictionless bearings; a crank handle is attached to the other end. When the crank is turned, the end of the handle rotates about the axle in a vertical circle of radius 0.12 m , the cylinder turns, and the crate is raised.

What magnitude of the force F applied tangentially to the rotating crank is required to raise the crate with an acceleration of 0.85 m/s^2? (You can ignore the mass of the rope as well as the moments of inertia of the axle and the crank.)

2144_aa.png

Solution Preview :

Prepared by a verified Expert
Physics: What magnitude of the force f applied tangentially to the
Reference No:- TGS01268043

Now Priced at $10 (50% Discount)

Recommended (91%)

Rated (4.3/5)