what is the value of integration limit n-> infinity [n!/n to the power n]to the power 1/n
Solution)  limit n-->inf.    [1 + (n!-n^n)/n^n]^1/n
= e^ limit n-->inf.    {(n!-n^n)/n^n}.1/n         
                             (applying formula lim x-->a  [1 + f(x)]^g(x) =    e ^ {lim x-->a    f(x).g(x)}  )
=e ^ lim n-->inf.       (n-1)!/(n)^n-1   -   1/n
=e ^ lim n---> inf.     (1-1/n)(1-2/n)(1-3/n)......1/n   -    1/n
=e ^ (1-o)(1-0).....(1-0).0  -   0
=e ^ 0-0
=1
hence, integation 1= x + C