Discussion:
Q1) Calculate a point estimate and a 95% confidence interval of the mean. Assuming your data set is normally distributed, determine an appropriate sample size if the maximum allowable error is three units for the below data set. Use a 90% confidence level to determine the sample size.
Q2) Interpret the relationship between the level of confidence and the width of the confidence interval.
| Price |
Bedrooms |
Size |
Pool |
Distance |
Twnship |
Garage |
Baths |
|
|
| 263.1 |
4 |
2300 |
1 |
17 |
5 |
1 |
2 |
|
|
| 182.4 |
4 |
2100 |
0 |
19 |
4 |
0 |
2 |
|
|
| 242.1 |
3 |
2300 |
0 |
12 |
3 |
0 |
2 |
|
|
| 213.6 |
2 |
2200 |
0 |
16 |
2 |
0 |
2.5 |
|
|
| 139.9 |
2 |
2100 |
0 |
28 |
1 |
0 |
1.5 |
|
|
| 245.4 |
2 |
2100 |
1 |
12 |
1 |
1 |
2 |
|
|
| 327.2 |
6 |
2500 |
0 |
15 |
3 |
1 |
2 |
|
|
| 271.8 |
2 |
2100 |
0 |
9 |
2 |
1 |
2.5 |
|
|
| 221.1 |
3 |
2300 |
1 |
18 |
1 |
0 |
1.5 |
|
|
| 266.6 |
4 |
2400 |
0 |
13 |
4 |
1 |
2 |
|
|
| 292.4 |
4 |
2100 |
0 |
14 |
3 |
1 |
2 |
|
|
| 209 |
2 |
1700 |
0 |
8 |
4 |
1 |
1.5 |
|
|
| 270.8 |
6 |
2500 |
0 |
7 |
4 |
1 |
2 |
|
|
| 246.1 |
4 |
2100 |
0 |
18 |
3 |
1 |
2 |
|
|
| 194.4 |
2 |
2300 |
0 |
11 |
3 |
0 |
2 |
|
|
| 281.3 |
3 |
2100 |
0 |
16 |
2 |
1 |
2 |
|
|
| 172.7 |
4 |
2200 |
1 |
16 |
3 |
0 |
2 |
|
|
| 207.5 |
5 |
2300 |
1 |
21 |
4 |
0 |
2.5 |
|
|
| 198.9 |
3 |
2200 |
1 |
10 |
4 |
1 |
2 |
|
|
| 209.3 |
6 |
1900 |
1 |
15 |
4 |
1 |
2 |
|
|
| 252.3 |
4 |
2600 |
0 |
8 |
4 |
1 |
2 |
|
|
| 192.9 |
4 |
1900 |
1 |
14 |
2 |
1 |
2.5 |
|
|
| 209.3 |
5 |
2100 |
0 |
20 |
5 |
0 |
1.5 |
|
|
| 345.3 |
8 |
2600 |
0 |
9 |
4 |
1 |
2 |
|
|
| 326.3 |
6 |
2100 |
0 |
11 |
5 |
1 |
3 |
|
|
| 173.1 |
2 |
2200 |
1 |
21 |
5 |
1 |
1.5 |
|
|
| 187 |
2 |
1900 |
0 |
26 |
4 |
0 |
2 |
|
|
| 257.2 |
2 |
2100 |
0 |
9 |
4 |
1 |
2 |
|
|
| 233 |
3 |
2200 |
0 |
14 |
3 |
1 |
1.5 |
|
|
| 180.4 |
2 |
2000 |
0 |
11 |
5 |
0 |
2 |
|
|
| 234 |
2 |
1700 |
0 |
19 |
3 |
1 |
2 |
|
|
| 207.1 |
2 |
2000 |
0 |
11 |
5 |
1 |
2 |
|
|
| 247.7 |
5 |
2400 |
0 |
16 |
2 |
1 |
2 |
|
|
| 166.2 |
3 |
2000 |
1 |
16 |
2 |
1 |
2 |
|
|
| 177.1 |
2 |
1900 |
0 |
10 |
5 |
1 |
2 |
|
|
| 182.7 |
4 |
2000 |
1 |
14 |
4 |
0 |
2.5 |
|
|
| 216 |
4 |
2300 |
0 |
19 |
2 |
0 |
2 |
|
|
| 312.1 |
6 |
2600 |
0 |
7 |
5 |
1 |
2.5 |
|
|
| 199.8 |
3 |
2100 |
0 |
19 |
3 |
1 |
2 |
|
|
| 273.2 |
5 |
2200 |
0 |
16 |
2 |
1 |
3 |
|
|
| 206 |
3 |
2100 |
1 |
9 |
3 |
0 |
1.5 |
|
|
| 232.2 |
3 |
1900 |
1 |
16 |
1 |
1 |
1.5 |
|
|
| 198.3 |
4 |
2100 |
1 |
19 |
1 |
1 |
1.5 |
|
|
| 205.1 |
3 |
2000 |
1 |
20 |
4 |
0 |
2 |
|
|
| 175.6 |
4 |
2300 |
1 |
24 |
4 |
1 |
2 |
|
|
| 307.8 |
3 |
2400 |
1 |
21 |
2 |
1 |
3 |
|
|
| 269.2 |
5 |
2200 |
0 |
8 |
5 |
1 |
3 |
|
|
| 224.8 |
3 |
2200 |
0 |
17 |
1 |
1 |
2.5 |
|
|
| 171.6 |
3 |
2000 |
1 |
16 |
4 |
0 |
2 |
|
|
| 216.8 |
3 |
2200 |
0 |
15 |
1 |
1 |
2 |
|
|
| 192.6 |
6 |
2200 |
1 |
14 |
1 |
0 |
2 |
|
|
| 236.4 |
5 |
2200 |
0 |
20 |
3 |
1 |
2 |
|
|
| 172.4 |
3 |
2200 |
0 |
23 |
3 |
0 |
2 |
|
|
| 251.4 |
3 |
1900 |
0 |
12 |
2 |
1 |
2 |
|
|
| 246 |
6 |
2300 |
0 |
7 |
3 |
1 |
3 |
|
|
| 147.4 |
6 |
1700 |
1 |
12 |
1 |
0 |
2 |
|
|
| 176 |
4 |
2200 |
0 |
15 |
1 |
1 |
2 |
|
|
| 228.4 |
3 |
2300 |
0 |
17 |
5 |
1 |
1.5 |
|
|
| 166.5 |
3 |
1600 |
1 |
19 |
3 |
0 |
2.5 |
|
|
| 189.4 |
4 |
2200 |
0 |
24 |
1 |
1 |
2 |
|
|
| 312.1 |
7 |
2400 |
0 |
13 |
3 |
1 |
3 |
|
|
| 289.8 |
6 |
2000 |
0 |
21 |
3 |
1 |
3 |
|
|
| 269.9 |
5 |
2200 |
1 |
11 |
4 |
1 |
2.5 |
|
|
| 154.3 |
2 |
2000 |
0 |
13 |
2 |
0 |
2 |
|
|
| 222.1 |
2 |
2100 |
0 |
9 |
5 |
1 |
2 |
|
|
| 209.7 |
5 |
2200 |
1 |
13 |
2 |
1 |
2 |
|
|
| 190.9 |
3 |
2200 |
1 |
18 |
3 |
1 |
2 |
|
|
| 254.3 |
4 |
2500 |
1 |
15 |
3 |
1 |
2 |
|
|
| 207.5 |
3 |
2100 |
1 |
10 |
2 |
0 |
2 |
|
|
| 209.7 |
4 |
2200 |
1 |
19 |
2 |
1 |
2 |
|
|
| 294 |
2 |
2100 |
0 |
13 |
2 |
1 |
2.5 |
|
|
| 176.3 |
2 |
2000 |
1 |
17 |
3 |
0 |
2 |
|
|
| 294.3 |
7 |
2400 |
0 |
8 |
4 |
1 |
2 |
|
|
| 224 |
3 |
1900 |
1 |
6 |
1 |
1 |
2 |
|
|
| 125 |
2 |
1900 |
0 |
18 |
4 |
0 |
1.5 |
|
|
| 236.8 |
4 |
2600 |
1 |
17 |
5 |
1 |
2 |
|
|
| 164.1 |
4 |
2300 |
0 |
19 |
4 |
0 |
2 |
|
|
| 217.8 |
3 |
2500 |
0 |
12 |
3 |
0 |
2 |
|
|
| 192.2 |
2 |
2400 |
0 |
16 |
2 |
0 |
2.5 |
|
|
| 125.9 |
2 |
2400 |
0 |
28 |
1 |
0 |
1.5 |
|
|
| 220.9 |
2 |
2300 |
1 |
12 |
1 |
1 |
2 |
|
|
| 294.5 |
6 |
2700 |
0 |
15 |
3 |
1 |
2 |
|
|
| 244.6 |
2 |
2300 |
0 |
9 |
2 |
1 |
2.5 |
|
|
| 199 |
3 |
2500 |
1 |
18 |
1 |
0 |
1.5 |
|
|
| 240 |
4 |
2600 |
0 |
13 |
4 |
1 |
2 |
|
|
| 263.2 |
4 |
2300 |
0 |
14 |
3 |
1 |
2 |
|
|
| 188.1 |
2 |
1900 |
0 |
8 |
4 |
1 |
1.5 |
|
|
| 243.7 |
6 |
2700 |
0 |
7 |
4 |
1 |
2 |
|
|
| 221.5 |
4 |
2300 |
0 |
18 |
3 |
1 |
2 |
|
|
| 175 |
2 |
2500 |
0 |
11 |
3 |
0 |
2 |
|
|
| 253.2 |
3 |
2300 |
0 |
16 |
2 |
1 |
2 |
|
|
| 155.4 |
4 |
2400 |
1 |
16 |
3 |
0 |
2 |
|
|
| 186.7 |
5 |
2500 |
1 |
21 |
4 |
0 |
2.5 |
|
|
| 179 |
3 |
2400 |
1 |
10 |
4 |
1 |
2 |
|
|
| 188.3 |
6 |
2100 |
1 |
15 |
4 |
1 |
2 |
|
|
| 227.1 |
4 |
2900 |
0 |
8 |
4 |
1 |
2 |
|
|
| 173.6 |
4 |
2100 |
1 |
14 |
2 |
1 |
2.5 |
|
|
| 188.3 |
5 |
2300 |
0 |
20 |
5 |
0 |
1.5 |
|
|
| 310.8 |
8 |
2900 |
0 |
9 |
4 |
1 |
2 |
|
|
| 293.7 |
6 |
2400 |
0 |
11 |
5 |
1 |
3 |
|
|
| 179 |
3 |
2400 |
0 |
8 |
4 |
1 |
2 |
|
|
| 188.3 |
6 |
2100 |
1 |
14 |
2 |
1 |
2.5 |
|
|
| 227.1 |
4 |
2900 |
0 |
20 |
5 |
0 |
1.5 |
|
|
| 173.6 |
4 |
2100 |
0 |
9 |
4 |
1 |
2 |
|
|
| 188.3 |
5 |
2300 |
0 |
11 |
5 |
1 |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
| 221.1029 |
3.8 |
2223.81 |
0.361905 |
14.62857 |
3.104762 |
0.67619 |
2.080952 |
Arithmetic Mean |
| 213.6 |
4 |
2200 |
0 |
15 |
3 |
1 |
2 |
Median |
|
| 188.3 |
4 |
2100 |
0 |
16 |
4 |
1 |
2 |
Mode |
|
| 227.824 |
5 |
304.5833 |
0.5 |
15.85 |
3 |
0.5 |
2.25 |
Weighted Mean |