Let f x be a twice differentiable function and f0 5 then


Level 1:

1. If α is a repeated root of ax2 + bx + c = 0, then
limx→α tan (ax2 + bx + c)/(x - α)2 is

(a) a         (b) b
(c)  c         (d) 0

2. limx→0 (ex + e-x + 2cosx -4)/(x4) is equal to

(a) 0       (b) 1
(c) -6      (d) - 1/6

3. If limx→0 (729x - 243x - 81x + 9x + 3x -1)/X3 = k(log 3)3, then

k=

(a) 4       (b) 5
(c) 6       (d) none of these

4. limx→0 1 - cos3x/xsinxcosx =

(a) 3/2     (b) -2
(c) 1         (d) none of these

5. If f(2), g (x) be differentiable functions and f (1) = g (1) = 2 then limx→1 (f(1)g(x) - f(x)g(1)- f(1) + g(1))/(g(x)- f (x)) is equal to

(a) 0        (b) 1
(c) 2         (d) none of these

6. limx→1 ∑xr-1r/(x-1) =

(a) 0    (b) n(n+1)/2

(c) 1    (d) none of these

7. Let f (x) be a twice differentiable function and f"(0) = 5, then limx→0 (3f (x) -4f (3x) + f (9x))/x2 is equal to
(a) 30    (b) 120
(c) 40    (d) none of these

8. If (9) = 9 and f'(9) = 1, then limx→9 (3- √f(x))/(3 - √x) is equal to
(a) 0    (b) 1
(c) - 1   (d) none of these

9. limn→∞ (cosx/2 cosx/4 cosx/8.....cosx/2n) =

(a) x/sinx      (b) six/x

(c) 0              (d) none of these

10. If limx→0 (sin2x + asinx/x3) be finite, then the value of a and the limit are given by

(a) - 2, 1 (b) - 2, - 1
(c) 2, 1   (d) 2, - 1

11. The value of limn→∞ 1/n4[ 1(∑nk= 1k) + 2(∑n-1k =1 k ) + 3 [n-2k=1 k + . . . + n.1] will be
(a) 1/24   (b) 1/12
(c)1/6      (d) 1/3

12. If α and β be the roots of ax2 + bx + c = 0, then

limx→α [ 1 + αx2 + bx + c)1/(x-α) is

(a) log |a (α - β)|  (b) ea (α - β)
(c) ea(β - α)          (d) none of these

13. limx→1(3√x2 - 23√(x+1))/(x-1)2 is equal to

(a) 1/9     (b) 1/6

(c) 1/3      (d) (d) none of these

14. limn→∞nr=3 (r3 -1/(r3 + 1))

(a) 1/3    (b) 6/7
(c) -2/3   (d) none of these

15. limx→5 (x2- 9x + 20)/ (x - [x]) =

(a) 1                     (b) 0
(c) does not exist (d) cannot be determined

16. If [x] denotes the integral part of x, then limn→∞1/n3 (∑nk= 1[k2x]) =

(a) 0      (b) x/2
(c)x/3    (d) x/6

17. limn→∞ (tanθ + 1/2tanθ/2 + 1/22tanθ/22 + .....+ 1/2ntanθ/2n) =

(a) 1/θ       (b) 1/θ -2cot 2θ
(b) 2cot2θ  (d) none of these

18.  limn→∞ ((x) + 2(x) + (3x) + ...... +(nx))/n2, where

{x} = x - [x] denotes the fractional part of x, is

(a) 1       (b) 0
(c) 1/2    (d) none of these

19. limx→a (sinx/sina)1/(x-a), a ≠ nΠ, n is an integer, equals

(a) ecot a (b) etan a
(c) esin a (d) ecos a

20. limx→0 (1 + tan x)/(1 + sin x)1/sinx is equals to

(a) 0       (b) 1
(c) - 1     (d) none of these

21. limx→a (2 - x/a)tanΠx/2a is equal to

(a)eΠ/2      (b) e2/Π
(c) e-2/Π    (d) e-Π/2

22. limx→0 (cosx + a sinbx)a/x is equal to

(a) e-a2b    (b) eab2
(c) ea2b      (d) e-b2a

23. The value of limx→0(sinx/x)sinx/(x-xinx) is
(a) 1            (b) - 1
(c) 0             (d) none of these

24. If Ai = x- ai/|x- ai|, i = 1, 2, ..., n and if a1 < a2 < a3 <..... < an. Then limx→0 (A1A2...An), 1 ≤ m ≤ n

(a) is equal to (- 1)m     (b) is equal to (- 1)m + 1
(c) is equal to (- 1)m -1  (d) does not exist

25. limx→0 xx is equal to

(a) 0     (b) 1
(c) - 1   (d) none of these

26. limx→0 tan([-Π2]x) - x2tan(-Π2)/sin2x equals, where [] denotes the greatest integer function

(a) 0              (b) 1

(c) tan10 -10  (d) ∞

27. limx→1 xsin{x}/(x-1), where {x} denotes the fractional part of x, is equal to

(a) -1     (b) 0

(c) 1       (d) does not exist

28. limn→ {7/10 + 29/102 + 133/103 +.....+ (5n + 2n)/10n} is equal to

(a) 3/4     (b) 2
(c) 5/4      (d) 1/2

29. limx→-1 ((x4 + x2 + x + 1)/(x2 - x + 1))1 - cos(x+1)/(x + 1)2 is equal to

(a) 1              (b) (2/3)1/2

(c) (3/2)1/2    (d) e1/2

30. limn→(cosx/n)n is equal to

(a) e1          (b) e-1

(c) 1            (d) none of these

31. limx→0+ (b/x)[x/a]  where a > 0, b > 0 and [x] denotes greatest integer less than or equal to x is

(a) 1/a     (b) b

(c) b/a      (d) 0

32. If f(x) = {sin[x]/[x], [x] ≠ 0, where [x] denotes the greatest integer ≤ x, then limx→0 f(x) equals

                   { 0,            [x] = 0   

(a) 0            (c) -1
(c)  1           (d) none of these

33. limx→0(ln cosx/4√(1 + x2 -1)) is

(a) loga 6     (b) loga3
(c) loga 2     (d) none of these

34. The value of limx→3(loga(x-3/(√(x + 6) -3)))) is
(a) loga6       (b) loga3
(c) loga2       (b) none of these

35. limh→0(2[√3 sin(Π/6 + h) - cos(Π/6 + h)])/(√3h(√3 cosh -sinh) is equal to

(a) 4/3       (b) -4/3
(c) 2/3       (b) 3/4

36. Let f (x) = x - [x], where [x] denotes the greatest integer ≤ x and g(x) = limn→[f(x)]2n - 1/[f(x)]2n + 1, then g (x) =
(a) 0        (b) 1
(c) -1       (d) none of these

37. If f (x) = { tan-1([x] + x)/[x] - 2x, [x] ≠ 0
                    {  0,                           [x] = 0
where [x] denotes the greatest integer less than or equal to x, then limx→0 f (x) is equal to

(a) -1/2     (b) 1

(c) Π/4       (d) does not exist

38. limx→2 (2x - x2)/(xx - 22) is equal to
(a) log 2 -1/(log2+1)      (b) log 2 + 1/(log2 - 1)

(c) 1 (d) - 1

39. If limx→0 (xn - sinxn)/(x - sinn x) is non-zero finite, then n may be equal to
(a) 1      (b) 2
(c) 3      (d) none of these

40. limx→Π/2 (sin x - (sin x)sin x )/(1 - sin x + In sin x)
(a) 1      (b) 2
(c) 3       (d) 4

41. The value of limx→a √(a2 - x2) cotΠ/2 √((a -x)/(a + x)) is
(a) 2a/Π      (b) - 2a/Π
(c) 4a/Π      (d) -4a/Π

42. limx→∞/2 f (x), where 2x- 3/x < f(x) < (2x2 + 5x)/x2 is

(a) 1     (b) 2
(c) -1    (d) -2

43. limx→0 (cosec3x.cotx - 2 cot3 x.cosec x + cot4x/sec x ) is equal to

(a) 1     (b) - 1
(c) 0      (d) none of these

Level 2:

44. The value of limx→0([100/sin x] + [99sinx/x]), where [.] represents greatest integer function, is
(a) 199     (b) 198
(c) 0          (d) none of these

45. If f (x) = sin x, x ≠ nΠ,
                =  2,      x = nΠ
where n ∈ Z and

g (x) = x2 + 1,   x ≠ nΠ,
        = 3,            x = 2.
then limx→0 g[f (x)] is
(a) 1       (b) 0
(c) 3       (d) does not exist

46. The value of limx→∞ (√x +√x + √x - √x) is
(a) 1/2           (b) 1

(c) 0               (d) none of these

47. The value of limx→∞[tan-1 (x +1)/(x+2) - Π/4] is

(a) 1/2           (b) -1/2

(c) 1               (d) -1

48. limn→∞ cos(Π√(n2 +n), n ∈ Z is equal to

(a) 0               (b) 1
(c) - 1             (d) None of these

49. limn→∞ (nk sin2(n!))/(n +2), 0 < k < 1, is equal to

(a) ∞             (b) 1
(c) 0               (d) none of these

50. limx→1 √((1 - cos2(x -1))/(x -1)

(a) exists and it equals √2

(b) exists and it equals - √2

(c) does not exist because (x - 1) → 0,

(d) does not exist because left hand limit is not equal to right hand limit

51. The value of limx→∞ x5/5x is

(a) 1              (b) - 1
(c) 0               (d) none of these

52. limx→0(cosx + sinx)1/x is equal to
(a) e               (b) e2
(c) e-1            (d) 1

53. The value of limx→Π/4 ((2√2  - cosx + sinx)3)/(1 - sin2x) is

(a) 3/√2          (b) √2/3

(c) 1/√2           (d) √2

54. The value of limh→0 (ln( 1 + 2h) - 2ln(1+ h))/h2  is
(a) 1                (b) - 1
(c) 0                 (d) none of these

55. The value of limn→( 1/n + e1/n/n + e2/n/n + .....+ e(n-1)/n/n ) is
(a)1                 (b) 0
(c) e - 1           (d) e + 1

56. limx→1 xsin(x - [x])/(x-1), where [.] denotes the greatest integer function, is equal to

(a) 1                 (b) -1
(c) ∞                (d) does not exist

57. If f(x) = ∫2sinx - sin2x/x3dx, x ≠ 0, then limx→0 f '(x) is
(a) 0                  (b)∞
(c) - 1                (d) 1

58. limx→Π/2 [x/2]/ln(sinx) (where [.] denotes the greatest integer function)

(a) does not exist     (b) equals 1
(c) equals 0              (d) equals - 1

59. limm→∞limn→∞ (1 + cos2m n!Πx) is equal to

(a) 2                     (b) 1
(c) 0                     (d) none of these
-3])]

60. limx→0 [sin([x-3])/[x-3]], where [ . ] represents greatest integer function, is

(a) 0                      (b) 1

(c) does not exist  (d) sin 1

61. The values of constants a and b so that

limx→ ((x2+1)/(x+1) - ax -b) =0 are

(a) a = 1, b = - 1        (b) a= -1, b = 1
(c) a = 0, b = 0           (d) a =2, b = -1

62. limx→(1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/n(n +1) is equal to

(a) 1            (b) - 1
(c) 0            (d) none of these

63. limx→∞  (log x)2/xn, n > 0 is equal to

(a) 1             (b) 0
(c) - 1           (d) 1/2

64. If the rth term, tr, of a series is given by tr = r4 + r2 +1, then limn→∞ Σr=1n tr, is

(a) 1              (b) -2
(c) 1/3           (d) none of these

65. limx→n(-1)[x], where [x] denotes the greatest integer less than or equal to x, is equal to

(a) (-1)n        (b) (-1)n-1
(c) 0              (d) does not exist

66. limx→1 y3/x3 - y2 - 1 as (x, y) → (1, 0) along the line

          y→o
y = x - 1 is given by
(a) 1                (b) ∞
(c) 0                 (d) none of these

67. limx→∞ (1 - 2 + 3 - 4 + 5 - 6 + ...-2n)/((√n2 + 1) + √(4n2 - 1)) is equal to

(a) 1/3                (b) -1/3
(c) -1/5               (d) none of these

68. The value of limx→-∞ [x4sin(1/x) + x2/(1 + |x|3)] is

(a) 1                (b) -1
(c) ∞               (d) none of these

69. limx→2 (2x + 23-x - 6))/(2-x/2 - 21-x) is equal to

(a) 8                (b) -1
(c) 2               (d) none of these

70. limx→0 8/x8(1- cosx2/2 - cosx4/4 + cosx2/2 cosx2/4) is equal to

(a) 1/16    (b) -1/16

(c) 1/32    (d) -1/32

71. limn→∞[logn-1(n).logn(n+1).logn+1(n + 2) ......lognk-1(nk) ] is equal to
(a) 0.        (b) n
(c) k          (d) none of these

72. limn→∞[1/1.3 + 1/3.5 + 1/5.7 + .......+ 1/(2n+1)(2n+3) is equal to

(a) 1         (b) 1/2
(c) -1/2     (d) none of these

73. The value of limx→∞[11/x + 21/x + 31/x +......+ n1/x ] is

(a) n!         (b)  1/2

(c) -1/2       (d) none of these

74. limn→∞ (1 +x)(1 +x2)(1 +x4) ........ (1 + x2n), |x| < 1 is equal to
(a) 1/(x-1)     (b)1/(1-x)
(c) 1 - x         (d) x - 1

75. limx→∞ xn/ex= 0, (n integer), for

(a) no value of n

(b) all values of n

(c) only negative values of n

(d) only positive values of n

76. The value of is limx→1  (xn + xn-1 + xn-2 + ...+ x2 + x - n)/(x - 1) is

(a) n(n+1)/2        (b) 0

(c) 1                     (d) n

77. If   t=  (12 + 22 + 32 +...+r2)/(13 +23 +33 +...+r3) and Sn = ∑nr=1(-1)r, then limn→, is given by

(a) 2/3                  (b) -2/3
(c) 1/3                   (d) -1/3

78. If limx→0 ((1 + a3) + 8e1/x)/( 1 + (1 - b3)e1/x) = 2 then

(a) a = 1, b = (- 3)1/3         (b) a = 1, b = 31/3
(c) a = - 1, b = - (3)1/3       (d) none of these

79. If a = min {x2 + 4x + 5, x ∈ R} and b =limθ→01 - cos2θ/θ2 then the value of ∑nr=0ar.bn-r is

(a) (2n+1 -1)/4.2n        (b) 2n + 1 - 1
(c) (2n+1 - 1)/3.2n      (d) none of these

80. limn→∞ ((1.2+2.3+3.4+...+n(n+1))/n3 is equal to
(a) 1                (b) - 1
(c) 1/3             (d) none of these

81. limx→0 log(1 + x + x2) + log(1 - x + x2) is is equal to

(a) 1                  (b) - 1
(c) 0                   (d) ∞

82. limx→e lim (ln x -1)/|x -e| is equal to
(a) 1/e               (b)-1/e
(c) e                   (d) does not exist

83. If x1 = 3 and xn+1 = √(2 + xn), n ≥ 1, then limn→∞ Xn is equal to

(a) -1                  (b) 2
(c) √5                 (d) 3

84. The value of limx→∞ (3x+1 - 5x+1)/(3x -5x) is
(a) 5                   (b) -5
(c) - 5                 (d) none of these

85. limn→1/n ( 1+ e1/n + e2/n + .....+ en-1/n) is equal to

(a) e                  (b) - e
(c) e - 1             (d) 1 - e

86. limx→∞√(x + sinx)/(x - cosx) =
(a) 0                  (b) 1
(c) - 1                (d) none of these

87. If Sn = ∑ni=1ai and limn→∞ an = a, then limn→∞ (Sn+1 -Sn)/(√∑ni=1i) is equal to

(a) 0                   (b) a

(c) √2a                (d) none of these

88. The value of  limn→∞ [3√(n2 - n3) +n] is
(a) 1/3             (b) -1/3
(c) 2/3              (d) -2/3

89. The value of limn→∞ (4√(n5 + 2) - 3√(n2 + 1)/ (5√(n4 + 2) - 2√(n3 + 1) is

(a) 1                (b) 0

(c) -1               (d) ∞

90. The integer n for which limx→0 ((cos x -1) (cos x - ex))/xn is a finite non-zero number, is

(a) 1               (b) 2
(c) 3                (d) 4

91. The value of limx→∞ (2√x +33√x + 55√x)/(√3x - 2 + 3√2x -3) is

(a) 2/√3           (b) √3        

(c) 1/√3            (d) none of these

92. limx→0 (x3√(z2 - (z-x)2))/(3√(8xz - 4x2) + 3√(8xz)4 is equal to

(a) z/211/3       (b)  1/223/3.z

(c) 221/3z         (d) none of these

93. In a circle of radius r, an isosceles triangle ABC is inscribed with AB = AC. If the ΔABC has perimeter P = 2[√(2 hr - h2) + √(2 hr) and area A = h√(2 hr - h2), where h is the altitude from A to BC, then limh→0+ A/P3 is equal to

(a) 128 r                 (b) 1/128r

(c) 1/64r                 (d) none of these

94. limx→2(√(1 - cos{2(x-2)}))/(x-2) 

(a) equals 1/√2        (b) does not exist

(c) equals √2            (d) equals - √2

Solution Preview :

Prepared by a verified Expert
Mathematics: Let f x be a twice differentiable function and f0 5 then
Reference No:- TGS01506099

Now Priced at $50 (50% Discount)

Recommended (97%)

Rated (4.9/5)