An alternative to a lan is simply a big timesharing system


TEXTBOOK - COMPUTER NETWORKS, FIFTH EDITION BY ANDREW S. TANENBAUM AND DAVID J. WETHERALL

Chapter 1 - INTRODUCTION

PROBLEMS

1. Imagine that you have trained your St. Bernard, Bernie, to carry a box of three 8-mm tapes instead of a flask of brandy. (When your disk fills up, you consider that an emergency.) These tapes each contain 7 gigabytes. The dog can travel to your side, wherever you may be, at 18 km/hour. For what range of distances does Bernie have a higher data rate than a transmission line whose data rate (excluding overhead) is 150 Mbps? How does your answer change if (i) Bernie's speed is doubled; (ii) each tape capacity is doubled; (iii) the data rate of the transmission line is doubled.

2. An alternative to a LAN is simply a big timesharing system with terminals for all users. Give two advantages of a client-server system using a LAN.

3. The performance of a client-server system is strongly influenced by two major network characteristics: the bandwidth of the network (that is, how many bits/sec it can transport) and the latency (that is, how many seconds it takes for the first bit to get from the client to the server). Give an example of a network that exhibits high band-width but also high latency. Then give an example of one that has both low bandwidth and low latency.

4. Besides bandwidth and latency, what other parameter is needed to give a good characterization of the quality of service offered by a network used for (i) digitized voice traffic? (ii) video traffic? (iii) financial transaction traffic?

5. A factor in the delay of a store-and-forward packet-switching system is how long it takes to store and forward a packet through a switch. If switching time is 10 μsec, is this likely to be a major factor in the response of a client-server system where the client is in New York and the server is in California? Assume the propagation speed in copper and fiber to be 2/3 the speed of light in vacuum.

6. A client-server system uses a satellite network, with the satellite at a height of 40,000 km. What is the best-case delay in response to a request?

7. In the future, when everyone has a home terminal connected to a computer network, instant public referendums on important pending legislation will become possible. Ultimately, existing legislatures could be eliminated, to let the will of the people be expressed directly. The positive aspects of such a direct democracy are fairly obvious; discuss some of the negative aspects.

8. Five routers are to be connected in a point-to-point subnet. Between each pair of routers, the designers may put a high-speed line, a medium-speed line, a low-speed line, or no line. If it takes 100 ms of computer time to generate and inspect each topology, how long will it take to inspect all of them?

9. A disadvantage of a broadcast subnet is the capacity wasted when multiple hosts attempt to access the channel at the same time. As a simplistic example, suppose that time is divided into discrete slots, with each of the n hosts attempting to use the channel with probability p during each slot. What fraction of the slots will be wasted due to collisions?

10. What are two reasons for using layered protocols? What is one possible disadvantage of using layered protocols?

11. The president of the Specialty Paint Corp. gets the idea to work with a local beer brewer to produce an invisible beer can (as an anti-litter measure). The president tells her legal department to look into it, and they in turn ask engineering for help. As a result, the chief engineer calls his counterpart at the brewery to discuss the technical aspects of the project. The engineers then report back to their respective legal departments, which then confer by telephone to arrange the legal aspects. Finally, the two corporate presidents discuss the financial side of the deal. What principle of a multilayer protocol in the sense of the OSI model does this communication mechanism violate?

12. Two networks each provide reliable connection-oriented service. One of them offers a reliable byte stream and the other offers a reliable message stream. Are these identical? If so, why is the distinction made? If not, give an example of how they differ.

13. What does ''negotiation'' mean when discussing network protocols? Give an example.

14. In Fig. 1-19, a service is shown. Are any other services implicit in this figure? If so, where? If not, why not?

15. In some networks, the data link layer handles transmission errors by requesting that damaged frames be retransmitted. If the probability of a frame's being damaged is p, what is the mean number of transmissions required to send a frame? Assume that acknowledgements are never lost.

16. A system has an n-layer protocol hierarchy. Applications generate messages of length M bytes. At each of the layers, an h-byte header is added. What fraction of the network bandwidth is filled with headers?

17. What is the main difference between TCP and UDP?

18. The subnet of Fig. 1-25(b) was designed to withstand a nuclear war. How many bombs would it take to partition the nodes into two disconnected sets? Assume that any bomb wipes out a node and all of the links connected to it.

19. The Internet is roughly doubling in size every 18 months. Although no one really knows for sure, one estimate put the number of hosts on it at 600 million in 2009. Use these data to compute the expected number of Internet hosts in the year 2018. Do you believe this? Explain why or why not.

20. When a file is transferred between two computers, two acknowledgement strategies are possible. In the first one, the file is chopped up into packets, which are individually acknowledged by the receiver, but the file transfer as a whole is not acknowledged. In the second one, the packets are not acknowledged individually, but the entire file is acknowledged when it arrives. Discuss these two approaches.

21. Mobile phone network operators need to know where their subscribers' mobile phones (hence their users) are located. Explain why this is bad for users. Now give reasons why this is good for users.

22. How long was a bit in the original 802.3 standard in meters? Use a transmission speed of 10 Mbps and assume the propagation speed in coax is 2/3 the speed of light in vacuum.

23. An image is 1600 × 1200 pixels with 3 bytes/pixel. Assume the image is uncompressed. How long does it take to transmit it over a 56-kbps modem channel? Over a 1-Mbps cable modem? Over a 10-Mbps Ethernet? Over 100-Mbps Ethernet? Over gigabit Ethernet?

24. Ethernet and wireless networks have some similarities and some differences. One property of Ethernet is that only one frame at a time can be transmitted on an Ethernet. Does 802.11 share this property with Ethernet? Discuss your answer.

25. List two advantages and two disadvantages of having international standards for network protocols.

26. When a system has a permanent part and a removable part (such as a CD-ROM drive and the CD-ROM), it is important that the system be standardized, so that different companies can make both the permanent and removable parts and everything still works together. Give three examples outside the computer industry where such inter-national standards exist. Now give three areas outside the computer industry where they do not exist.

27. Suppose the algorithms used to implement the operations at layer k is changed. How does this impact operations at layers k - 1 and k + 1?

28. Suppose there is a change in the service (set of operations) provided by layer k. How does this impact services at layers k-1 and k+1?

29. Provide a list of reasons for why the response time of a client may be larger than the best-case delay.

30. What are the disadvantages of using small, fixed-length cells in ATM?

31. Make a list of activities that you do every day in which computer networks are used. How would your life be altered if these networks were suddenly switched off?

32. Find out what networks are used at your school or place of work. Describe the network types, topologies, and switching methods used there.

33. The ping program allows you to send a test packet to a given location and see how long it takes to get there and back. Try using ping to see how long it takes to get from your location to several known locations. From these data, plot the one-way transit time over the Internet as a function of distance. It is best to use universities since the location of their servers is known very accurately.

34. Go to IETF's Web site, to see what they are doing. Pick a project you like and write a half-page report on the problem and the proposed solution.

35. The Internet is made up of a large number of networks. Their arrangement determines the topology of the Internet. A considerable amount of information about the Internet topology is available on line. Use a search engine to find out more about the Internet topology and write a short report summarizing your findings.

36. Search the Internet to find out some of the important peering points used for routing packets in the Internet at present.

37. Write a program that implements message flow from the top layer to the bottom layer of the 7-layer protocol model. Your program should include a separate protocol function for each layer. Protocol headers are sequence up to 64 characters. Each protocol function has two parameters: a message passed from the higher layer protocol (a char buffer) and the size of the message. This function attaches its header in front of the message, prints the new message on the standard output, and then invokes the protocol function of the lower-layer protocol. Program input is an application message (a sequence of 80 characters or less).

Request for Solution File

Ask an Expert for Answer!!
Computer Networking: An alternative to a lan is simply a big timesharing system
Reference No:- TGS02653961

Expected delivery within 24 Hours