--%>

What are electromotive force in electrochemical cells?

The main objective of this particular aspect of Physical Chemistry is to examine the relation between free energies and the mechanical energy of electromotive force of electrochemical cells. The ionic components of aqueous solutions can be treated on the basis of the general methods which have been developed in electrochemical cells. But no means were developed there for the deduction of solute free energies from the direct relation between free energies and the mechanical energy can be obtained by harnessing a reaction involving these species.

Now arrangements are considered whereby the mechanical energy that can be obtained from a reversible chemical change can be determined. The procedure leads to a direct, and frequently very accurate, measurement of the free-energy change for the reaction. The arrangement consists of allowing, or forcing the reaction to proceed at a state of balance in an electrochemical cell. The electrical energy, which can be converted essentially completely too mechanical energy, is determined.

The reactions that take place in electrochemical cells normally involve the ionic species of parent electrolytes. Some of these are accountable for the passage of the electric current through the usual aqueous solution in the cell. Information on obtained from the results of electrical measurements.

   Related Questions in Chemistry

  • Q : Net charge of a non-ionized atom

    Describe the net charge of a non-ionized atom?

  • Q : Oxoacids of halogens Why oxidising

    Why oxidising character of oxoacids of halogens decreases as oxidation number increases?

  • Q : Why medications include the hcl Why do

    Why do various medications include the hcl? Describe briefly?

  • Q : Question on molality Provide solution

    Provide solution of this question. Which of the following concentration factor is affected by change in temperature : (a)Molarity (b) Molality (c)Mole fraction (d)Weight fraction

  • Q : Numerical The volume of water to be

    The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Molecular basis of third law. The

    The molecular, or statistical, basis of the third law can be seen by investigating S = k in W.The molecular deductions of the preceding sections have led to the same conclusions as that stated in the third law of thermodynamics, namely, that a value can be

  • Q : Finding Normality Can someone please

    Can someone please help me in getting through this problem. Concentrated H2SO4 has a density of 1.98 gm/ml and is 98% H2SO4 by weight. The normality is: (a) 2 N  (b) 19.8 N  (c) 39.6 N  (d) 98

  • Q : Equimolar solutions Select the right

    Select the right answer of the question. Equimolar solutions in the same solvent have : (a)Same boiling point but different freezing point (b) Same freezing point but different boiling poin (c)Same boiling and same freezing points (d) Different boiling and differe

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Linde liquefaction process Liquefied

    Liquefied natural gas (LNG) is produced using a Linde liquefaction process from pure methane gas at 3 bar and 280 K (conditions at point 1 in figure below). A three-stage compressor with interceding is used to compress the methane to 100 bar (point 2). The first stage