--%>

Report on Radiobiology for Travel Space

I have a problem in wirting a report on Radiobiology for Travel Space.  Can someone provide me a complete report on the above topic.

E

Expert

Verified

Abstract:

There is an unknown energy that spreads throughout the universe out of the Earth’s protective atmosphere. This energy consists of high energetic particles transmitted in the form of waves. This energy transmitted in a form of waves or rays or particles is called Radiation. The waves comprised of energetic protons and heavy ions and a secondary radiation produced in shielding or tissue through nuclear reactions. The broad spectrum of radiation encountered in space goes from extreme ultraviolet radiation, X-rays and high energy particles as electrons, neutrons, protons and heavy ions up to iron and even higher charges.

Many biology experiments have been made during these space emissions to date, in ionizing the radiation encountered in low Earth orbit and the biological effects have been studied during the experiments. It has been found that there were issues of radiation from medical perspective. The effects of the radiation on the space travelers or astronauts have caused much research probes into the matter. Though this radiation is less damaging inside the Earth’s atmosphere, the effect it causes on the crew has been very alarming.

The paper discusses about various life evolutions and introduction to the study of effects of gravitational force and the effects of cosmic/solar radiations on human crew during space flights in first chapter. The second chapter includes the biological effects the cosmic radiation has on humans in detail. The third chapter describes the various types of radiations in space and their effects. The fourth chapter deals with the biological effects on DNA including direct and indirect damages. The fifth chapter represents the repair mechanisms needed.

Life on Earth:

Over billions of years, life on planet Earth evolved from primitive cells into at least 10 million of different species, which represent the existing biological diversity. Life evolved from simple cell organisms called prokaryotes (which do not have any nucleus) to eukaryotes (which have a nucleus). In the last few decades or so, varieties of novel organisms have been isolated, which include hyperthermophiles that can survive high temperatures like 110oC and barophiles that can survive pressures found in deepest trenches of the oceans and anaerobes that can accept iron, manganese, or even uranium as electron acceptors. Similarly many other organisms have been found that survive low nutrient or low temperatures environments that do not allow growth.

To know more....

   Related Questions in Physics

  • Q : Possibility to obtain the electron Is

    Is it possible to obtain the electron (or come out) from the nucleus?

  • Q : Define Dirac constant Dirac constant :

    Dirac constant: Planck constant, modified form; hbar Sometimes more suitable form of the Planck constant, stated as: hbar = h/(2 pi)

  • Q : Explain Fizeau method Fizeau method (A.

    Fizeau method (A. Fizeau, 1851): One of the primary truthfully relativistic experiments intended to compute the speed of light. Light is passed via a spinning cog-wheel driven by running water, is reflected off a far-away mirror, and

  • Q : Explain Planck radiation law Planck

    Planck radiation law: The law which explained blackbody radiation better than its precursor, therefore resolving the ultraviolet catastrophe. This is based on the supposition that electromagnetic radiation is quantized.

    Q : What is neutral buoyancy What do you

    What do you mean by the term neutral buoyancy? Briefly illustrate it.

  • Q : Describe the term ntu in thermodynamics

    Describe the term ntu in thermodynamics? Illustrate in short.

  • Q : Define Photovoltaics Photovoltaics (PV)

    Photovoltaics (PV): It transform light directly into electricity. The typical current residential installation of 12m2 could produce around 1,300 kWh pa with a peak of around 1.9kW, though larger and more efficient installations are possibl

  • Q : Bell's inequality Bell's inequality

    Bell's inequality (J.S. Bell; 1964) - The quantum mechanical theorem that explains that if the quantum mechanics were to rely on the hidden variables, it should have non-local properties.    

  • Q : Define Watt or SI unit of power Watt: W

    Watt: W (after J. Watt, 1736-1819): The derived SI unit of power, stated as a power of 1 J acting over the period of 1 s; it therefore has the units of J/s.

  • Q : Define Second or SI unit of time

    Second: s: The basic SI unit of time, stated as the period of time equivalent to the duration of 9 192 631 770 periods of the radiation analogous to the transition between the two hyperfine levels of the ground state of cesium-133 atom.